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ABSTRACT

The 4.2 Berkley Software Distribution ofuNIx® for the \AXt had seeral prob-
lems that could serely affect the werall performance of the systenThese problems
were identified with &rnel profiling and system tracing during day to day uSace
potential problem areas had been identified benchmark programs weredd® high-
light the bottlenecks. These benchmarksified that the problems existed andvided
a metric against which to validate proposed solutiombis paper examines the perfor
mance problems encountered and describes modifications Westdem made to the sys-
tem since the initial distribution.

The changes to the systenvlaonsisted of impreements to the performance of
the existing facilities, as well as enhancements to the curaeilitiés. Performance
improvements in the kernel include cacheing of path name translations, reductions in
clock handling and schedulinggahead, and imprged throughput of the netark sub-
system. Performandenprovements in the libraries and utilities include replacement of
linear searches of system databases withxeti®okup, merging of most network ser
vices into a single daemon, and eension of system utilities to use the mordicéént
facilities available in 4.2BSD. Enhancements in the kernel include the addition of sub-
nets and gtevays, increases in mgtkernel limits, cleanup of the signal and autoconfigu-
ration implementations, and support for windows and system logging. Functiea e
sions in the libraries and utilities include the addition of an Internet names, sew g/s-
tem management tools, and extensiondtoto work with Rascal. Thepaper concludes
with a brief discussion of changes made to the system to enhance sekliritf/these
enhancements are present in Berk&l&llX 4.3BSD.
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1. Introduction

The Berleley Software Distributions ofuNix for the VAX have alded mag new @pabilities that
were previously unailable underunix. The deelopment effort for 4.2BSD concentrated on \pding
new facilities, and in getting them to work correctany new data structures were added to the system to
support these mecapabilities. Inaddition, mag of the isting data structures and algorithms were put to
new uses or their old functions placed under increased demand. The effect of these changes was that mech-
anisms that were well tuned under 4.1BSD no longeviged adequate performance for 4.2BSThe
increased user feedback that came with the release of 4.2BSD andirmgdrody of experience with the
system highlighted the performance shortcomings of 4.2BSD.

This paper details theork that we hee done since the release of 4.2BSD to measure the perfor
mance of the system, detect the bottlenecks, and find solutions to remedyMbstof our tuning has
been in the context of the real timesharing systems in @inoeament. Rathethan using simulated avk-
loads, we hee ught to analyze our tuning efforts under realistic conditions. Much of the work has been
done in the machine independent parts of the system, hence thesesmgmts could be applied to other
variants of UNIX with equal success. All of the changes made bzen included in 4.3BSD.

Section 2 of the paper describes the tools and technigatahée to us for measuring system petfor
mance. InSection 3 we present the results of using these tools, while Section 4 has the performance
improvements that hae keen made to the system based on our measurements. Section 5 highlights the
functional enhancements thatvkaeen made to Bedtey UNIX 4.2BSD. Section 6 discusses some of the
security problems that ti@ been addressed.
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Performance -2- Introduction

2. Obsewation techniques

There are mantools available for monitoring the performance of the systefose that we found
most useful are described bslo

2.1. Systenmmaintenance tools

Several standard maintenance programs avelirable in observing the basic actions of the system.
Thevmstafl) program is designed to be an aid to monitoring systemwidétyactiogether with thgs(1)
command (as in “ps\w), it can be used to uestigate systemwide virtual memory acdty. By running
vmstatwhen the system is ae#i you can judge the system activity inve@l dimensions: job distriltion,
virtual memory load, paging and swapping \dttj disk and cpu utilization.ldeally, to havea balanced
system in actiity, there should be ¥e blocked (b) jobs, there should be little paging or swappinyitgti
there should bevailable bandwidth on the disk devices (most single arms peak out at 25-35 tps in prac-
tice), and the user cpu utilization (us) should be highv@Ba%).

If the system is sy, then the count of ast jobs may be large, andveeal of these jobs may often
be blocked (b).If the virtual memory is acte, then the paging demon will be running (sr will be non-
zero). ltis healtly for the paging demon to free pages when the virtual memory gets &ds triggered
by the amount of free memory dropping hela threshold and increases its pace as free memory goes to
zero.

If you runvmstatwhen the system is busy (a “vmstat &ives dl the numbers computed by the sys-
tem), you can find imbalances by noting abnormal job digtdbs. If mary processes are blocked (b),
then the disk subsystem igeloaded or imbalancedf you have sveal non-dma devices or open teletype
lines that are‘finging’’, or user programs that are doing high-speed ndfeted input/output, then the
system time may go high (60-80% or higher). It is often possible to pin down the cause of high system
time by looking to see if there is@ssie mntext switching (cs), interrupt activity (in) or system call acti
ity (sy). Long term measurements on one of our large machinesahaverage of 60 context switches
and interrupts per second and &arage of 90 system calls per second.

If the system is heavily loaded, or if youadittle memory for your load (1 ngebyte is little in our
ervironment), then the system may be forced taswThisis likely to be accompanied by a noticeable
reduction in the system resporaiess and long pauses when intevacgbs such as editors swap out.

A second important program iestat(1). lostatiteratively reports the number of characters read and
written to terminals, and, for each disk, the number of transfers per second, kilobytes transferred per sec-
ond, and the milliseconds peresage seeklt also gies the percentage of time the system has spent in user
mode, in user mode runningalqriority (niced) processes, in system mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and the number of
words transferred are counted; for terminals coleltj the number of input and output characters are
counted. Alsogvey 100 ms, the state of each disk is examined and a tally is made if the diskés acti
From these numbers and the transfer rates of thieedeit is possible to determingesage seek times for
each device.

When filesystems are poorly placed on thalable disks, figures reported ligstat can be used to
pinpoint bottlenecks. Under heavy system load, disKid¢rahould be spread out among theveliwith
higher traffic expected to thedees where the root, swap, and /tmp filesystems are located. When multi-
ple disk drves ae attached to the same contrqllbe system will attempt toverlap seek operations with
I/O transfers. When seeks are performesdtatwill show non-zero aerage seek times. Most modern disk
drives should exhibit an eerage seek time of 25-35 ms.

Terminal traffic reported byostat should be healy output oriented unless terminal lines are being
used for data transfer by programs suchu Input and output rates are system specHicteen editors
such asyi andemacdend to exhibit output/input ratios ofyamhere from 5/1 to 8/1. On one of ourdast
systems, 88 terminal lines plus 32 pseudo terminals, we observeeragesof 180 characters/second input
and 450 characters/second outpugra@l days of operation.
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2.2. Kernel profiling

It is simple to build a 4.2BSDeknel that will automatically collect profiling information as it eper
ates simply by specifying thep option toconfig(8) when configuring aéenel. Theprogram counter sam-
pling can be dvien by the system clock, or by an alternate real time clock. The latter is highly recom-
mended as use of the system clock results in statistical anomalies in accounting for the time spent in the
kernel clock routine.

Once a profiling system has been booted statistic gathering is handigchbg(8). Kgmonallows
profiling to be started and stopped and the internal state of the profiffiegstto be dumpedkKgmoncan
also be used to reset the state of the intewufééis to allev multiple experiments to be run without reboot-
ing the machine.

The profiling data is processed wgprof(1) to obtain information gerding the systers’ gperation.
Profiled systems maintain histograms of teenkel program countgthe number of imocations of each rou-
tine, and a dynamic call graph of theeeuting system. The postprocessing propagates the time spent in
each routine along the arcs of the call gra@prof then generates a listing for each routine in theél,
sorted according to the time it uses including the time of its call graph descer8eluts.each routine
entry is shown its (direct) call graph children, and/tioeir times are propaded to this routineA similar
display abwe the routine shows kwthis routines ime and the time of its descendents is propagated to its
(direct) call graph parents.

A profiled system is about 5-10% larger in its text space because of the calls to count the subroutine
invocations. Wherhe systemecutes, the profiling data is stored inwfbr that is 1.2 times the size of
the text space. All the information is summarized in memdris not necessary to kia a tace file being
continuously dumped to disk. Theashead for running a profiled systeraries; under normal load we see
arywhere from 5-25% of the system time spent in the profiling cdtieis the system is noticeably wier
than an unprofiled system, yet is not so bad that it cannot be used in a produdtmmrent. Thisis
important since it als us to gather data in a real environment rather than trying to devise syntir&tic w
loads.

2.3. Kernel tracing

The kernel can be configured to trace certain operations by speciptigris TRACE” in the con-
figuration file. This forces the inclusion of code that records the occurrenuents entrace ecordsin a
circular huffer in kernel memory Events may be enabled/disabled seledtyi while the system is operat-
ing. Eachtrace record contains a time stamp érakrom the VAX hardware time of day clock register), an
evant identifier and additional information that is interpreted according to themtetype. Buffer cache
operations, such as initiating a read, include the diske,dolock number and transfer size in the trace
record. \irtual memory operations, such as a pagein completing, include the virtual address and process id
in the trace record. The circular buffer is normally configured to hold 256 16-byte trace fecords.

Several user programs were written to sample and interpret the tracing inform&timn.program
runs in the background and periodically reads the circuiffierof trace recordsThe trace information is
compressed, in some instances interpreted to generate additional information, and a summary is written to a
file. In addition, the sampling program can also record information from othieekdata structures, such
as those interpreted by thenstatprogram. Datawritten out to a file is furtheruffered to minimize 1/0
load.

Once a trace log has been created, programs that compress and interpret the data may be run to gen-
erate graphs showing the data and relationships between tveoéziand system load.

The trace package was used mainly teestigate the operation of the file systenifbr cache.The
sampling program maintained a history of read-ahead blocks and used the trace information to calculate,
for example, percentage of read-ahead blocks used.

12 The standard trace facilities distributed with 4.2edilightly from those described here. The time stamp
in the distributed system is calculated from teenlels ime of day variable instead of the VAX hardwargise
ter, and the buffer cache trace points do not record the transfer size.
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2.4. Benchmarkprograms

Benchmark programs were used irotways. Firsta suite of programs was constructed to calculate
the cost of certain basic system operations. Operations such as systerarbalidand context switching
time are critically important invaluating the oerall performance of a systenBecause of the drastic
changes in the system between 4.1BSD and 4.2BSxsitimportant to verify theverhead of these o
level operations had not changed appreciably.

The second use of benchmarks wasxer@sing suspected bottleneckg/hen we suspected a spe-
cific problem with the system, a small benchmark progras wiritten to repeatedly use tleeifity. While
these benchmarks are not useful as a general tgotéinegive quick feedback on whether gpothesized
improvement is really having anfetct. Itis important to realize that the only real assurance that a change
has a beneficial effect is through long term measurements of general timeshengve numerous
examples where a benchmark program suggests vastuempeots while the change in the long term sys-
tem performance is negligible, and gersely examples in which the benchmark program run movéyslo
but the long term system performance immodgnificantly.
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3. Resultsof our obsewations

When 4.2BSD ws first installed on seral large timesharing systems the degradation in perfor
mance was significant. Informal measurements showed 4.2BSidipg 80% of the throughput of
4.1BSD (based on load@ages obsernd under a normal timesharing loadjany of the initial problems
found were because of programs that were not part of 4.1BSD. Using the techniques describedvin the pre
ous section and standard process profilingraé problems were identified_ater work concentrated on
the operation of thedtnel itself. In this section we discuss the problemswaned; inthe next section we
describe the changes made to the system.

3.1. Userprograms

3.1.1. Mailsystem

The mail system @as the first culprit identified as a major contributor to the degradation in system
performance. AtLucasfilm the mail system is heavily used on one machine>X&1/780 with eight
megabytes of memory Message traffic is usually between users on the same machine and ranges-from per
son-to-person telephone messages temgnization distribution lists. After caersion to 4.2BSD, it &s
immediately noticed that mail to distution lists of 20 or more people caused the system load to jump by
arywhere from 3 to 6 points. The number of processes spawned Isgrhenailprogram and the mes-
sages sent froreendmailto the system logging procesyslog generated significant load both from their
execution and their interference with basic system operatime number of context switches and disk
transfers often doubled whilsendmail operated; the system call rate jumped dramaticaBystem
accounting information consistently showehdmailas the top cpu user on the system.

3.1.2. Netvork servers

The network services provided in 4.2BSD adev mapabilities to the systemubare not without
cost. Thesystem uses one daemon process to accept requests for each network serdant proepres-
ence of may such daemons increases the numbers ofaqbcesses and files, and requires a larger con-
figuration to support the same number of users. Meehead of the routing and status updates can con-
sume seeral percent of the cpuRemote logins and shells incur moredead than their local eqaients.
For example, a remote login uses three processes and a pseudo-terminal handler in addition to the local
hardware terminal handlerWhen using a screen edit@ending and echoing a single characteolves
four processes on twmachines. Thadditional processes, context switching, network traffic, and terminal
handler @erhead can roughly triple the load presented by one local terminal user.

3.2. Systenoverhead

To measure the costs of various functions in the kernel, a profiling system was run for a 17 hour
period on one of our general timesharing machiMgkile this is not as reproducible as a synthetickw
load, it certainly represents a realistic test. This test was runvarakeccasions \er a three month
period. Despitéhe long period of time that elapsed between the test runs the shape of the profiles, as mea-
sured by the number of times each system call entry point was called, were remarkably similar.

These profiles turned upw&eal bottlenecks that are discussed in the next secB8averal of these
were n&v to 4.2BSD, but most were caused byedoading of mechanisms whichorked acceptably well
in previous BSD systems. The general conclusion from our measurenzentisat/ithe ratio of user to sys-
tem time had increased from 45% system / 55% user in 4.1BSD to 57% system / 43% user in 4.2BSD.

3.2.1. Micro-operation benchmarks

To compare certain basic system operations between 4.1BSD and 4.2BSD a suite of benchmark pro-
grams vas constructed and run on a VAX-11/750 with 4.%ggtes of physical memory and dwdisks on
a MASSBUS controller Tests were run with the machine operating in single user mode under both

24 During part of these observations the machine had only fogehytes of memory.
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4.1BSD and 4.2BSD.Pajing was localized to the &g where the root file system was located.

The benchmark programs were modeled after the Kashtan benchmarks, [Kashtan80], with identical
sources compiled under each system. The programs and their intended purpose are described briefly before
the presentation of the resultShe benchmark scripts were run twice with the results shown asetaga
of the two runs. Thesource code for each program and the shell scripts used during the benchmarks are
included in the Appendix.

The set of tests shown in Table 1 was concerned with system operations other than Plaging.
intent of most benchmarks is cledrhe result of runningignocswis deducted from theswbenchmark to
calculate the context switclverhead. Theexectests use ta different jobs to gauge the cost afedaying
a lamger program with a smaller one and viegsa. The' null job” and “big job” differ solely in the size
of their data segments, 1 kilobyte versus 256 kilobytes. In both cases the text segment of the parent is
larger than that of the chifiAll programs were compiled into the @eft load format that causes thette
segment to be demand paged out of the file system and shared between processes.

Test - Description

syscall - perform 100,00§etpid system calls

csw - perform 10,000 context switches using signals

signocsw - send 10,000 signals to yourself

pipeself4 - send 10,000 4-byte messages to yourself

pipeself512 - send 10,000 512-byte messages to yourself

pipediscard4 - send 10,000 4-byte messages to child who discards
pipediscard512 - send 10,000 512-byte messages to child who discards
pipeback4 - exchange 10,000 4-byte messages with child

pipeback512 - exchange 10,000 512-byte messages with child

forksO - fork-exit-wait 1,000 times

forks1k - sbrk(1024), fault page, fork-exit-wait 1,000 times

forks100k - sbrk(102400), fault pages, fork-exit-wait 1,000 times

vforksO - vfork-exit-wait 1,000 times

vforkslk - sbrk(1024), fault page, vfork-exit-wait 1,000 times

vforks100k - sbrk(102400), fault pages, vfork-exit-wait 1,000 times

execsOnull - fork-eec “null job”-exit-wait 1,000 times

execsOnull (1K env) - gecsOnull abee, with 1K environment added

execslknull - sbrk(1024), fault page, forkee “null job”-exit-wait 1,000 times
execslknull (1K env) - gecslknull abee, with 1K environment added
execs100knull - sbrk(102400), fault pages, fore®“null job”-exit-wait 1,000 times
vexecsOnull - vfork-eec “null job”-exit-wait 1,000 times

vexecslknull - sbrk(1024), fault page, vforkee “null job”-exit-wait 1,000 times
vexecs100knull - sbrk(102400), fault pages, vforee“null job”-exit-wait 1,000 times
execsObig - fork-eec “big job"-exit-wait 1,000 times

execslkbig - sbrk(1024), fault page, forkee “big job”-exit-wait 1,000 times
execs100kbig - sbrk(102400), fault pages, fokee"big job"-exit-wait 1,000 times
vexecsObig - vfork-eec “big job"-exit-wait 1,000 times

vexecs1lkbig - sbrk(1024), fault pages, vforkee “big job”-exit-wait 1,000 times
vexecs100kbig - sbrk(102400), fault pages, vforee"big job"-exit-wait 1,000 times

Table 1. Kernel Benchmark programs.

The results of these tests are shown in Tabld the 4.1BSD results are scaled to reflect their being
run on a VAX-11/750, thecorrespond closely to those found in [Joy80].

3©These tests should alsoveareasured the cost okganding the text segment; unfortunately time did not
permit running additional tests.

48We assume that a VAX-11/750 runs at 60% of the speed @& 11/780 (not considering floating point
operations).
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Berkeley Software Distribution UNIX Systems

Test Elapsedime - User Time - System Time

41 42 43 41 42 43 41 42 43
syscall 28.029.0 23.0 45 53 35 239237 204
cswW 45.0 60.0 450 3.5 43 3.3 195254 19.0
signocsw 16.523.0 16.0 19 3.0 1.1 14620.1 15.2
pipeself4 215290 260 1.1 1.1 0.8 20.128.0 25.6
pipeself512 47.559.0 55.0 1.2 1.2 10 46.158.3 54.2
pipediscard4 32.042.0 36.0 3.2 3.7 3.0 15518.8 15.6
pipediscard512 61.07/6.0 69.0 3.1 2.1 2.0 29.736.4 33.2
pipeback4 57.075.0 66.0 29 3.2 33 251342 29.7
pipeback512 110.038.0 125.03.1 3.4 2.2 52.265.7 57.7
forksO 37.541.0 220 05 03 0.3 345376 215
forks1lk 40.0 43.0 220 04 0.3 0.3 36.038.8 21.6
forks100k 217.%223.0176.00.7 0.6 0.4 21421841752
vforksO 34537.0 220 05 06 05 273285 179
vforks1k 35.037.0 22.0 0.6 0.8 05 27.228.6 179
vforks100k 35.037.0 22.0 0.6 0.8 0.6 27.6289 179
execsOnull 97.592.0 66.0 3.8 24 0.6 68.782.5 48.6
execsOnull (1K en) 197.0229.075.04.1 2.6 0.9 167.212.362.6
execs1knull 99.0100.066.04.1 19 0.6 70.586.8 48.7
execslknull (1K em) 199.0230.0 75.04.2 2.6 0.7 170.214.962.7
execs100knull 283.278.0216.04.8 2.8 1.1 251.269.3202.0
vexecsOnull 100.2.0 66.0 5.1 2.7 1.1 63.776.8 45.1
vexecslknull 100.01.0 66.0 52 28 1.1 63.277.1 451
vexecs100knull 100.@2.0 66.0 5.1 3.0 1.1 64.077.7 456
execsObig 129.201.0101.04.0 3.0 1.0 102.453.592.7
execs1lkbig 130.202.0101.03.7 3.0 1.0 104.155.593.0
execs100kbig 318.385.0263.04.8 3.1 1.1 286.639.1247.9
vexecsObig 128.2200.0101.04.6 3.5 1.6 98.5149.690.4
vexecslkbig 125.200.0 101.04.7 3.5 1.3 98.9149.3 88.6
vexecs100kbig 126.200.0 101.04.2 34 1.3 99.5151.089.0

Table 2. Kernel Benchmark results (all times in seconds).

In studying the measurements we found that the basic system call and context wsvitehddid
not change significantly between 4.1BSD and 4.2B%Be signocswesults were caused by the changes to
the signalinterface, resulting in an additional subroutineoration for each call, not to mention additional
complexity in the systera’implementation.

The times for the use of pipes are significantly higher under 4.2BSD because of their implementation
on top of the interprocess communicatiagifities. Underd.1BSD pipes were implemented without the
compl«ity of the soclkt data structures and with simpler codeurther while not obviously a factor here,
4.2BSD pipes ha less system buffer space provided them than 4.1BSD pipes.

The exec tests shown in Table 2 were performed with 34 bytes of environment information under
4.1BSD and 40 bytes under 4.2BSDo figure the cost of passing data through thérenment, the
execsOnull and eecs1knull tests were rerun with 1065 additional bytes of dite results are shoin Ta-
ble 3. These results shothat passing argument data is significantlywslo than under 4.1BSD: 121
ms/byte versus 93 ms/byt&ven using this factor to adjust the basierbead of arexec system call, this
facility is more costly under 4.2BSD than under 4.1BSD.

3.2.2. Rith name translation

The single mostx@ensve function performed by the kernel is path name translafidnis has been
true in almost wery UNIX kernel [Mosher80]; we find that our general time sharing systems do about
500,000 name translations per day.
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Test Real User - System

41 42 41 42 41 42
exeesOnull 197.229.04.1 2.6 167.812.3
execslknull 199.230.04.2 2.6 170.4214.9

Table 3. Benchmark results with “larg&nvironment (all times in seconds).

Name translations became moxgensve in 4.2BSD for sgeral reasons. The single mosipensve
addition was the symbolic link. Symbolic linksveathe efect of increasing thevarage number of compo-
nents in path names to be translated. As an insidkara@e, consider the system manager that decides to
change /tmp to be a symbolic link to /usr/tmname such as /tmp/tmp1234 thatvpoesly required tw
component translations, warequires four component translations plus the cost of reading the contents of
the symbolic link.

The nev directory format also changes the characteristics of name translatm@more compbe
format requires more computation to determine where to plageemteies in a directory Corversely the
additional information allows the system to only look atvacthtries when searching, hence searches of
directories that had once grown large but currentiyeHaw active entries are checked quicklyThe nev
format also stores the length of each name so that costly string comparisons are only done on names that
are the same length as the name being sought.

The net effect of the changes is that therage time to translate a path name in 4.2BSD is 24.2 mil-
liseconds, representing 40% of the time processing system calls, that is 19% of the total cyclesrin the k
nel, or 11% of all cyclesxecuted on the machine. The times are shown in TabM/ellaveno compara-
ble times fomameiunder 4.1 though tlyeare certain to be significantly less.

Pat - Time - % of kernel
self 14.3ms/call11.3%
child 9.9ms/call 7.9%

total 24.2ms/call 19.2%

Table 4. Call times fonameiin 4.2BSD.

3.2.3. Clockprocessing

Nearly 25% of the time spent in the kernel is spent in the clock processing routines. (This is a clear
indication that to woid sampling bias when profiling thetnel with our tools we need to i them from
an independent clock.) These routines are responsible for implementing timeouts, scheduling the proces-
sor, maintaining kernel statistics, and tending various hardware operations such as draining the terminal
input silos. Only minimal wrk is done in the hardware clock interrupt routine (at high priority), the rest is
performed (at a lower priority) in a software interrupt handler scheduled by the hardware interrupt handler
In the worst case, with a clock rate of 100 Hz and witiryehardware interrupt scheduling a sofive
interrupt, the processor must field 200 interrupts per second. vEheead of simply trapping and return-
ing is 3% of the machine cycles, figuring out that there is nothing to do requires an additional 2%.

3.2.4. Terminal multiplexors

The terminal multipleors supported by 4.2BSD V& programmable recegr silos that may be used
in two ways. Wth the silo disabled, each character reegticauses an interrupt to the procesdamabling
the receier silo allows the silo to fill before generating an interrupt, allowing multiple characters to be read
for each interruptAt low rates of input, receéd characters will not be processed for some time unless the
silo is emptied periodicallyThe 4.2BSD kernel uses the input silos of each terminal muitipland emp-
ties each silo on each clock interrupt. This allows high input rates without the costobfapgeter inter
rupts while assuring ¥ lateny. Howeve, as character input rates on most machines are usually lo
(about 25 characters per second), this can resukceseie ovehead. Atthe current clock rate of 100 Hz,
a machine with 5 terminal multiplers configured makes 500 calls to the reseinterrupt routines per
second. Inaddition, to achie aceptable input lategcfor flow control, each clock interrupt must
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schedule a software interrupt to run the silo draining routife3his implies that the worst case estimate
for clock processing is the basieethead for clock processing.

3.2.5. Piocess table management

In 4.2BSD there are numerous places in thé&l where a linear search of the process table is per
formed:

* inext to locate and wakeup a procesgErent;
* inwaitwhen searching fatomMBIE andSTOPPED processes;

» infork when allocating a me process table slot and counting the number of processes already created
by a user;

* innewprog to verify that a process id assigned to a/peocess is not currently in use;
» inkill andgsignalto locate all processes to which a signal should beeted;

» inschedcpwhen adjusting the process prioritie®ry second; and

» inschedwhen locating a process to swap out and/or swap in.

These linear searches can incur significastfeead. Theule for calculating the size of the process table
is:
nproc = 20 + 8 * maxusers

that means a 48 user system willda 94 slot process tabléWith the addition of network services in
4.2BSD, as manas a @zen sergr processes may be maintained simplyaitaincoming requestsThese

seners are normally created at boot time which causes them to be allocated slots negintireghaf the

process table. This means that process table searches under 4.2BS8lyate tikde sgnificantly longer

than under 4.1BSD. System profiling shows that as much as 20% of the time spent in the kernel on a
loaded system (a VAX-11/780) can be spergdhedcpwand, on gerage, 5-10% of thedtnel time is spent

in schedcpu The other searches of the proc table are similafgctefd. Thisshavs the system can no

longer tolerate using linear searches of the process table.

3.2.6. Filesystem buffer cache

The trace facilities described in section 2.3 were useattreg statistics on the performance of the
buffer cache.We were interested in measuring théeefiveness of the cache and the read-ahead policies.
With the file system block size in 4.2BSD four to eight times that of a 4.1BSD file system, we were con-
cerned that large amounts of read-ahead might be performed without beindAlssedve were interested
in seeing if the rules used to size thdfér cache at boot time wereveeely affecting the werall cache
operation.

The tracing package was rumepa three hour period during a peak mid-afternoon period oA)a V
11/780 with four mgabytes of physical memoryThis resulted in auffer cache containing 400 kilobytes
of memory spread among 50 to 2Q@fers (the actual number ofiffers depends on the size mix of disk
blocks being read at sgiven time). Thepertinent configuration information is shown in Table 5.

During the test period the loadepage ranged from 2 to 13 with aveeage of 5. The system had no
idle time, 43% user time, and 57% system tirfibe systemgeraged 90 interrupts per seconddeding
the system clock interrupts), 220 system calls per second, and 58t cwvitehes per second (40 voluntary,
10 involuntary).

The actve virtual memory (the sum of the address space sizes of all jobs teatihan the preious
twenty seconds)war the period ranged from 2 to 6 gabytes with an eerage of 3.5 mgabytes. There
was no svapping, though the page daemon was inspecting about 25 pages per second.

On average 250 requests to read disk blocks were initiated per sedtwede include read requests
for file blocks made by user programs as well as requests initiated by the s@stetem reads include
requests for indexing information to determine where asfileit data block resides, file system layout

510t js not possible to check the input silos at the time of the actual clock interrupt without modifying the
terminal line disciplines, as the input queues may not be in a consisteft.state
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Controller - Drive - Device - File System
DEC MASSBJS -DEC RP06 - hpOd - /usr
- - hpOb - swap
Emulex SC780 - Fujitsu Eagle - hpla - /usr/spool/news
- - hplb - swap
- - hple - /usr/src
- - hpld - /u0 (users)
- Fujitsu Eagle - hp2a - tmp
- - hp2b - swap
- - hp2d - /ul (users)
- Fujitsu Eagle - hp3a -/

Table 5. Actve file systems during buffer cache tests.

maps to allocate medata blocks, and requests for directory contents needed to do path name translations.

On arerage, an 85% cache hit ratasvobserved for read requests. Thus only 37 disk reads were ini-
tiated per second. In addition, 5 read-ahead requests were made each second filling about 2@#teof the b
pool. Despitehe policies to rapidly reuse read-aheaffdys that remain unclaimed, more than 90% of the
read-ahead buffers were used.

These measurements showed that tiféeb cache s working eectively. Independent tests v&a
also showed that the size of theffbr cache may be reduced significantly on memory-poor system without
severe effects; we hae ot yet tested this hypothesis [Shannon83].

3.2.7. Netvork subsystem

The overhead associated with the network facilities found in 4.2BSD is often difficult to gauge with-
out profiling the system. This is because most input processing is performed in modules scheduled with
software interrupts. As a result, the system time spent performing protocol processing is rarely attributed to
the processes that really raaethe data. Since the protocols supported by 4.2BSD eatvansgnificant
overhead this was a serious concern. Results from a profletekshw an aerage of 5% of the system
time is spent performing network input and timer processing in airoement (a 3Mb/s Ethernet with
most traffic using TCP). This figure can vary significantly depending on themehardware used, the
avaage message size, and whether paokassembly is required at the network layam one machine we
profiled over a 17 hour period (our gtavay to the ARFANET) 206,000 input messages accounted for 2.4%
of the system time, while another 0.6% of the system time was spent performing protocol timer processing.
This machine was configured with an ACC LH/DH IMP interface and a DMA 3Mb/s Ethernet controller.

The performance of TCPver slower long-haul networks was degraded substantially lwy greb-
lems. Thefirst problem was a bug that peated round-trip timing measurements from being made, thus
increasing retransmissions unnecessaiilye second was a problem with the maximugmsent size cho-
sen by TCPthat was well-tuned for Ethernet, but was poorly chosen for theANERP, where it causes
paclet fragmentation.(The maximum segment size was actually negotiated upwards to a value that
resulted in excess fragmentation.)

When benchmarked in Ethernet environments the main merodfgr Imanagement of the nedvk
subsystem presented some performance anomalies. VEitead of processing smalinbufs” seveely
affected throughput for a substantial range of message dizepite of the fact that most system ustilities
made use of the throughput optimal 1024 byte size, user procassdddrge degradations for some arbi-
trary sizes. This was specially true for TCP/IP transmissions [Cabrera84, Cabrera85].

3.2.8. Vrtual memory subsystem

We ran a set of tests intended t@eise the virtual memory system under both 4.1BSD and 4.2BSD.
The tests are described in Table ®e test programs dynamically allocated a 7.3y8gte array (using
sbrk(2)) then referenced pages in the array either: sequenitiedlyaurely random fashion, or such that the
distance between succegsimges accessed was randomly selected from a Gaussianuti@tribin the
last case, successiuns were made with increasing standard deviations.
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Test - Description

seqpage - sequentially touch pages, 10 iterations
seqpage-v - as abg but first makevadvisg?2) call
randpage - touch random page 30,000 times
randpage-v - as abe, but first makevadvisecall
gausspage.l - 30,000 Gaussian accesses, standard deviation of 1
gausspage.10 - as alm standard deviation of 10
gausspage.30 - as alm standard deviation of 30
gausspage.40 - as alm sandard deviation of 40
gausspage.50 - as alm sandard deviation of 50
gausspage.60 - as alm sandard deviation of 60
gausspage.80 - as alm sandard deviation of 80
gausspage.inf - as alwg standard deviation of 10,000

Table 6. Paging benchmark programs.

The results in Table 7 stwohow the additional memory requirements of 4.2BSD can generate more
work for the paging system. Under 4.1BSD, the system used 0.5 of the gabytes of physical memory
on the test machine; under 4.2BSD it used nearly ddoyée of physical memory This resulted in more
page &ults and, hence, more system tine. establish a common ground on which to compare the paging
routines of each system, we check instead ¥eage page fault service times for those test runs that had a
statistically significant number of random pagelfs. Thesdigures, shown in Table 8, sliao sgnificant
difference between the twsystems in the area of pagauft servicing. We airrently hae ro explanation
for the results of the sequential paging tests.

Test Real User - System - Page Faults

41 42 41 42 41 42 41 42
segpage 9591126 16.7 12.8 197.@13.0 17132 17113
segpage-v 579812 3.8 5.3 216.237.7 8394 8351
randpage 571569 6.7 7.6 64.077.2 80859776
randpage-v 572562 6.1 7.3 622775 81269852

gausspage.l 25 24 236238 08 08 8 8
gausspage.10 26 26 22.7 230 3.2 36 2 2
gausspage.30 34 33 25.0248 86 89 2 2
gausspage.40 42 81 239250 115 136 3 260
gausspage.50 113175 24.2 26.2 19.6 26.3 7841851
gausspage.60 191234 27.6 26.7 27.4 36.0 2068177
gausspage.80 312329 28.0 27.9 41.5 52.0 39353105
gausspage.inf 619621 82.9 85.6 68.3 81.5 8040650

Table 7. Paging benchmark results (all times in seconds).

Test Rage Faults - PFST
41 42 41 42

randpage 808®776 791 789

randpage-v 812®852 765 786

gausspage.inf 804®650 848 844

Table 8. Page fault service times (all times in microseconds).

6% The 4.1BSD system used for testing was really a 4.1a system configured with networking facilities and
code to support remote file access. The 4.2BSD system also included the remote file access code. Since both
systems would be Iger than similarly configuredvanilla” 4.1BSD or 4.2BSD system, we consider out con-
clusions to still be valid.
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4. Performance Improvements

This section outlines the changes made to the system since the 4.2BShtidistridhechanges
reported here were made in response to the problems described in Sedttm iBipravements fall into
two major classes; changes to the kernel that are described in this section, and changes to the system
libraries and utilities that are described in the following section.

4.1. Rerformance Improvements in the Kernel

Our goal has been to optimize system performance for our general timeshaningreent. Since
most sites running 4.2BSD V& been forced to tak alvantage of declining memory costs rather than
replace their é@sting machines with ones that are more powerful, we ldaosen to optimize running time
at the expense of memoryhis tradedf may need to be reconsidered for personal workstations that ha
smaller memories and higher latgrdisks. Decreaseis the running time of the system may be unnotice-
able because of higher paging rates incurred bygardaernel. Wheregossible, we hze dlowed the size
of caches to be controlled so that systems with limited memory may reduce them as appropriate.

4.1.1. NameCacheing

Our initial profiling studies shveed that more than one quarter of the time in the system was spent in
the pathname translation routimamej translating path names to inod¥s An inspection ohameishows
that it consists of tev nested loops.The outer loop is tkgrsed once per pathname component. The inner
loop performs a linear search through a directory looking for a particular pathname component.

Our first idea was to reduce the number of iterations around the inner Inameiby observing that
mary programs step through a directory performing an operation on each entry ifeumprove perfor-
mance for processes doing directory scans, the systeps krack of the directory offset of the last compo-
nent of the most recently translated path name for each process. If the next name the process requests is in
the same directoryhe search is started from thdsef that the previous name was found (instead of from
the beginning of the directory). Changing directorieslidates the cache, as does modifying the directory
For programs that step sequentially through a directory with N files, search time decreases from O (N2) to
O(N).

The cost of the cache is about 20 lines of code (about 0.2 kilobytes) and 16 bytes per process, with
the cached data stored in a procegs&rvector.

As a quick benchmark to verify the maximunfieefiveness of the cache we ran “Is’-¢n a drec-
tory containing 600 files. Before the per-process cache this command used 22.3 seconds of system time.
After adding the cache the program used the same amount of user time, but the system time dropped to 3.3
seconds.

This change prompted our rerunning a profiled system on a machine containing tiemes The
results showed that the timenameidropped by only 2.6 ms/call and still accounted for 36% of the system
call time, 18% of the kernel, or about 10% of all the machymwées. Thisamounted to a drop in system
time from 57% to about 55%. The results are shown in Table 9.

part - time - % of kernel
self 11.0ms/call9.2%
child 10.6ms/call 8.9%
total 21.6ms/call18.1%

Table 9. Call times fonameiwith per-process cache.

The small performance imprement was caused by anacache hit ratio. Although the cache as
90% efective when hit, it wvas only usable on about 25% of the names being translated. An additional

7161 |node is an abbwation for “Index node’. Eachfile on the system is described by an inode; the inode
maintains access permissions, and an array of pointers to the disk blocks that hold the data associated with the
file.
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reason for the small impvement was that although the amount of time spenaimeiitself decreased sub-
stantially more time vas spent in the routines that it called since each directory had to be accessed twice;
once to search from the middle to the end, and once to search from the beginning to the middle.

Frequent requests for a small set of names are best handled with a cache of recent name
translationy’. This has the effect of eliminating the inner loomamei For each path name component,
nameifirst looks in its cache of recent translations for the needed name. If it exists, the directory search can
be completely eliminated.

The system already maintained a cache of recently accessed inodes, so the initial name cache main-
tained a simple name-inode association that was used to check each component of a path name during name
translations. W considered implementing the cache by tagging each inode with its most recently translated
name, buteentually decided to hee a gparate data structure that kept names with pointers to the inode ta-
ble. Tagging inodes has wdrawbacks; man inodes such as those associated with login ports remain in
the inode table for a long period of time, but areenéooked up by name. Other inodes, such as those
describing directories are looked up frequently by ydifferent namese(g.“..”). By keeping a separate
table of names, the cache can truly reflect the most recently used namadded benefit is that the table
can be sized independently of the inode table, so that machines with small amounts of memory can reduce

the size of the cache (ovem diminate it) without modifying the inode table structure.

Another issue to be considered isthe name cache should hold references to the inode fdbte.
mally processes hold “hard referencds) incrementing the reference count in the inode tieéerence.
Since the system reuses only inodes with zero reference counts, a hard reference insures that the inode
pointer will remain walid. However, if the name cache holds hard references, it is limited to some fraction
of the size of the inode table, since some inodes must be left freeMdiles Italso makes it impossible
for other parts of the kernel tenfy sole use of a device or file. These reasons made it impractical to use
hard references without affecting the béba of the inode cacheing scheme. Thus, we chose instead to
keep “soft referencesprotected by aapability — a 3-bit number guaranteed to be uniaﬂl% When an
entry is made in the name cache, the capability of its inode is copied to the name caché&/eemtran
inode is reused it is issued awneapability When a name cache hit occurs, the capability of the name
cache entry is compared with the capability of the inode that it references. If the capabilities do not match,
the name cache entry isvatid. Sincethe name cache holds only soft references, it may be sized indepen-
dent of the size of the inode tabla&.final benefit of using capabilities is that all cached names for an inode
may be inalidated without searching through the entire cache; instead all you need to do is assign a ne
capability to the inode.

The cost of the name cache is about 200 lines of code (about 1.2 kilobytes) and 48 bytes per cache
entry Depending on the size of the system, about 200 to 1000 entries will normally be configured, using
10-50 kilobytes of physical memoryhe name cache is resident in memory at all times.

After adding the system wide name cache we rélanr-I'’ on the same directoryThe user time
remained the same, Wwever the system time rose slightly to 3.7 seconds. This was not surprisiagres
now had to maintain the cache, but wasereble to male any use of it.

Another profiled system was created and measurements were colleatadl@ rour period. These
measurements showed a 13 ms/call decreasanmej with nameiaccounting for only 26% of the system
call time, 13% of the time in the kernel, or about 7% of all the machkitlesc Systentime dropped from
55% to about 49%. The results are shown in Table 10.

On our general time sharing systems we find that during theetelr period from 8AM to 8PM
the system does 500,000 to 1,000,000 name translations. Statistics on the performance of both waches sho
that the large performance impement is caused by the high hit ratibhe name cache has a hit rate of
70%-80%; the directory offset cache gets a hit rate of 5%-15%. The combined hit rate af taehes
almost alvays adds up to 85%With the addition of the tavcaches, the percentage of system timetbel
to name translation has dropped from 25% to less than ¥Y@Bide the system wide cache reduces both the

88 The cache iséyed on a name and the inode and device number of the directory that contABiti-
ated with each entry is a pointer to the corresponding entry in the inode table.

92 2 \When all the numbers he teen exhausted, all outstanding capabilities argguland numbering
starts @er from scratch. Purging is possible as all capabilities are easily found in kernel memory.
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part - time - % of kernel
self 4.2ms/call 6.2%
child 4.4ms/call 6.6%
total 8.6ms/call 12.8%

Table 10. Call times fonameiwith both caches.

amount of time in the routines thaameicalls as well amameiitself (since fewer directories need to be
accessed or searched), it is interesting to note that the actual percentage of system timeaspeiitsielf
increaseswen though the actual time per call decreases. This is because less total time is being spent in the
kernel, hence a smaller absolute time becomes a larger total percentage.

4.1.2. IntelligentAuto Siloing

Most terminal input hardare can run in tev modes: it can either generate an interrupt each time a
character is recegd, or collect characters in a silo that the system then periodically dreanprovide
quick response for interaeé input and flav control, a silo must be chee#t 30 to 50 times per second.
Ascii terminals normally exhibit an input rate of less than 30 characters per séktahik input rate the
are most efficiently handled with interrupt per character mode, since this genenasgefterrupts than
draining the input silos of the terminal multiplexors at each clock interkibien input is being generated
by another machine or a malfunctioning terminal connectiowgbe, the input rate is usually more than
50 characters per second. It is more efficient to useviaede slo input mode, since this generatewée
interrupts than handling each character as a separate inteBinge a gien dialup port may switch
between uucp logins and user logins, it is impossible to statically select the fioiehteihput mode to
use.

We therefore changed the terminal multiplexor handlers to dynamically choose between the use of
the silo and the use of per-character interruptislow input rates the handler processes characters on an
interrupt basis,widing the werhead of checking each interface on each clock interiDpting periods of
sustained input, the handler enables the silo and starts a timer to drain input. This timer runs less frequently
than the clock interrupts, and is used only when there is a substantial amount o mptriansition from
using silos to an interrupt per character is damped to minimize the number of transitions stithrhfic
(such as in network communicationnput characters seevto flush the silo, prenting long lateng. By
switching between these twmodes of operation dynamicallyhe orerhead of checking the silos is
incurred only when necessary.

In addition to the savings in the terminal handlers, the clock interrupt routine is no longer required to
schedule a software interrupt after each hardware interrupt to drain theTiBsoftware-interrupt Vel
portion of the clock routine is only needed when timegsre or the current user process is collecting an
execution profile. Thus, the number of interrupts attributable to clock processing is substantially reduced.

4.1.3. Pocess Table Management

As systems hae gown lager, the size of the process table has grown far past 200 entvidgs laige
tables, linear searches must be eliminated frojfeequently usedafcility. The kernel process table is
now multi-threaded to alle selective farching of actie and zombie processe4\ third list threads unused
process table slotd=ree slots can be obtained in constant time by taking one from the front of the free list.
The number of processes used bywagiuser may be computed by scanning only thevadist. Sincethe
4.2BSD release, the kernel maintained linked lists of the descendents of each prbisebiskage is no
exploited when dealing with process exit; parents seekingxihstatus of children n@ avoid linear search
of the process table, but examine only their direct descendents. In additionytbasaégorithm for find-
ing all descendents of axitng process used multiple linear scans of the process table. This has been
changed to follw the links between child process and siblings.

When forking a n& process, the system must assign it a unique process idernfHiesystem prg-
ously scanned the entire process table each time it createdmatess to locate an identifier thaaswnot
already in use.Now, to avoid scanning the process table for eactv ipeocess, the system computes a
range of unused identifiers that can be directly assig@etdly when the set of identifiers is exhausted is
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another process table scan required.

4.1.4. Scheduling

Previously the scheduler scanned the entire process table once per second to recompute precess prior
ities. Processethat had run for their entire time slice had their prioritwdoed. Processdhat had not
used their time slice, or that had been sleeping for the past second had their priority raised. On systems
running mam processes, the scheduler represented nearly 20% of the systeniltimeduce this eer-
head, the scheduler has been changed to consider only runnable processes when recomputingTpriorities.
insure that processes sleeping for more than a second still get their appropriate priority boost, their priority
is recomputed when there placed back on the run queue. Since the set of runnable process is typically
only a small fraction of the total number of processes on the system, the cosikofgrthe scheduler
drops proportionally.

4.1.5. ClockHandling

The hardvare clock interrupts the processor 100 times per second at high prissityost of the
clock-based eents need not be done at high prigritye system schedules a lower priority software inter
rupt to do the less time-critical@ts such as cpu scheduling and timeout processing. Often there are no
such gents, and the softare interrupt handler finds nothing to do and returns. The high prigety Bov
checks to see if there areM@riority events to process; if there is nothing to do, the software interrupt is
not requestedOften, the high priority interrupt occurs during a period when the machine had been running
at low priority. Rather than posting a software interrupt that would occur as soon as it returns, trerdnardw
clock interrupt handler simply lowers the processor priority and calls the software clock routines. directly
Between these twoptimizations, nearly 80 of the 100 software interrupts per second can be eliminated.

4.1.6. FileSystem

The file system uses a large block size, typically 4096 or 8192 bytesllow small files to be
stored diciently, the large blocks can be beakinto smaller fragments, typically multiples of 1024 bytes.
To minimize the number of full-sized blocks that must be brolto fragments, the file system uses a best
fit stratggy. Programs that slowly g files using write of 1024 bytes or less can force the file system to
copy the data to successly larger and larger fragments until it finally grows to a full sized block. The file
system still uses a best fit strategy the first time a fragment is writenever, the first time that the file
system is forced to cgpa gowing fragment it places it at the dianing of a full sized block Continued
grownth can be accommodated without furtheryéog by using up the rest of the block. If the file ceases to
grow, the rest of the block is stiliailable for holding other fragments.

When creating a mefile name, the entire directory in which it will reside must be scanned to insure
that the name does not alreacyse For large directories, this scan is time consumiBgcause there ag
no provision for shortening directories, a directory that is oneefidled will increase the cost of file cre-
ation eren dter the wer-filling is corrected. Thus, for example, a congested uucp connection eanalea
legacy long after it is cleared upTo dleviate the problem, the systemwnaeletes empty blocks that it
finds at the end of a directory while doing a complete scan to createrame.

4.1.7. Netvork

The default amount ofuffer space allocated for stream sockets (including pipes) has been increased
to 4096 bytes. Stream satk and pipes moreturn their biffer sizes in the block size field of the stat
structure. Thignformation allavs the standard 1/O library to use more optimaffdring. Unix domain
stream sockets also return a dummyicke and inode number in the stat structure to increase compatibility
with other pipe implementationslhe TCP maximum segment size is calculated according to the destina-
tion and interface in use; non-local connections use a more conseszifor long-haul networks.

On multiply-homed hosts, the local address bound by T@Paways corresponds to the intade
that will be used in transmitting data packets for the connecBeveral bugs in the calculation of round
trip timing have keen corrected. TCP noswitches to an alternateatpvay when an existing route fails, or
when an ICMP redirect message is reegi ICMP source quench messages are used to throttle the trans-
mission rate of TCP streams by temporarily creating an artificially small sendwyiatbretransmissions
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send only a single packet rather than resending all queuedAla&nd poliy has been implemented that
decreases the number of small packets outstanding for network terminal traffic [Nagleddingraddi-
tional reduction of network congestion. Theedead of pact routing has been decreased by changes in
the routing code and by cacheing the most recently used route for each datagram socket.

The luffer management strategy implementedsbgenchas been changed to nealetter use of the
increased size of the sakiuffers and a better tuned delayed acknowledgement algorithm. Routing has
been modified to include a one element cache of the last route computed. Multiple messages send with the
same destination morequire less processingzigures 1 and 2 present typical throughput rates that user
processes in 4.3BSD systems may expect when run under light load. In [Cabrera85] we documented the
performance degradation due to load in either the sender hosterdwsi, or ether Any CPU contention
degrades substantially the throughput acHide by user processebVe haveobserned empty VAX 11/750s
using up to 90% of their cycles transmitting network messages.

Figure 1. (I owe it. Ifc)
Figure 2. (I owe it. Ifc)

4.1.8. Exec

When execing a nev process, the kernel creates thevrigrograms agument list by copying the
arguments and environment from the parent prosesilress space into the system, then back caihag
onto the stack of the newly created proceBsese tvo copy operations were done one byte at a timg, b
are nev done a string at a time. This optimization reduced the time to process an argument listtoy a f
of ten; the werage time to do aexeccall decreased by 25%.

4.1.9. ContextSwitching

The kernel used to post a sofive @ent when it wanted to force a process to be resched@éen
the process would be rescheduled for other reasons before exiting the kernel, delayiegtttrape At
some later time the process would again be selected to run and would complete its pending system call,
finally causing theent to tale pace. Theevent would cause the scheduler to beaked a £cond time
selecting the same process to riie fix to this problem is to cancelyasoftware reschedulevents when
saving a process conte Thischange doubles the speed with which processes can synchronize using pipes
or signals.

4.1.10. Setjmp/Longjmp

The kernel routinesetjmp that saes the current system context in preparation for a non-local goto
used to sa&e mary more reisters than necessary under most circumstances. By trimming its operation to
save amly the minimum state required, theethead for system calls decreased by\anage of 13%.

4.1.11. Compensatindor L ack of Compiler Technology

The current compilersvailable for C do not do gnsignificant optimization.Good optimizing com-
pilers are unlikely to beuilt; the C language is not well suited to optimization because of its rampant use
of unbound pointers. Thus, mamrlassical optimizations such as common subexpression analysis and
selection of register variables must be done by hand usixtgrior” knowledge of when such optimiza-
tions are safe.

Another optimization usually done by optimizing compilers is inline expansion of small or frequently
used routines. In past Beley systems this has been done by usiegto run wver the assembly language
and replace calls to small routines with the code for the body of the routine, often a single VAX instruction.
While this optimization eliminated the cost of the subroutine call and return, it did not eliminate the push-
ing and popping of seral arguments to the routind.he sedscript has been replaced by a more intelligent
expanderjnline, that merges the pushes and pops inteanto regsters. Br example, if the C code

if (scanc(mapli], 1, 47, i - 63))

is compiled into assembly language it generates the code shown in the left hand colaivie &fLTThe
sedinline expander changes this code to that shown in the middle column. The newer optimizer eliminates
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most of the stack operations to generate the code shown in the right hand column.

Alternative C Language Code Optimizations
cc - sed - inline
subl3 $64,_i,—(sp) subl3 $64,_i,—(sp) - subl3 $64,_i,r5
pushl $47- pushl $47 - movl $47,r4
pushl $1- pushl $1 - pushl $1
mull2 $16,_i,r3 - mull2 $16,_i,r3 - mull2 $16,_i,r3
pushl =56(fp)[r3] - pushl =56(fp)[r3] - movl =56(fp)[r3],r2
calls $4,_scanc - movl (sp)+,r5 - movl (sp)+,r3
tstl rO - movl (sp)+,r4 - scanc r2,(r3),(r4),r5
jeql L7 - movl (sp)+,r3 - tstl rO
- movl (sp)+,r2 - jeql L7
- scanc r2,(r3),(r4),r5
- tstl rO
- jeql L7

Table 11. Alternatie inline code expansions.

Another optimization imolved regaluating isting data structures in the context of the current sys-
tem. For example, disk Wiffer hashing \&s implemented when the system typically had thirty to fifty
buffers. Mostsystems today a 200 to 1000 bffers. Consequentlynost of the hash chains contained
ten to a hundreduffers each! The running time of the o levd buffer management primites was dra-
matically impraved Smply by enlarging the size of the hash table.

4.2. Improvements to Libraries and Utilities

Intuitively, changes to thedtnel would seem to ke the greatest paybsince thg affect all pro-
grams that run on the systerHowever, the kernel has been tuned mames before, so the opportunity
for significant impreement was small.By contrast, may of the libraries and utilities had ve been
tuned. Br example, we found utilities that spent 90% of their running time doing single character read sys-
tem calls. Changing the utility to use the standard I/O library cut the running timeadwyoa éf fie!
Thus, while most of our time has been spent tuning ¢neek, more than half of the speedups are because
of improvements in other parts of the syste®ome of the more dramatic changes are described in the fol-
lowing subsections.

4.2.1. Hashedatabases

UNIX provides a set of database management routdies, that can be used to speed lookups in
large data files with an external hashed infie. Theoriginal version of dbm was designed to work with
only one database at a tim&hese routines were generalized to handle multiple database files, enabling
them to be used in rewrites of the password and host file lookup routines. W heutiaes used to access
the password file significantly impre the running time of manimportant programs such as the mail sub-
system, the C-shell (in doing tilde expansids);|, etc.

4.2.2. Buffered I/O

The nev filesystem with its larger block sizes allows better performance, but it is possibiradele
system performance by performing numerous small transfers rather than using appropriatelyffsiced b
The standard 1/O library automatically determines the optimibsize for each fileSome C library rou-
tines and commonly-used programs use-level 1/0 or their own bffering, havever. Seveal important
utilities that did not use the standard 1/O library and weiféebing 1/0 using the old optimaluffer size,
1Kbytes; the programs were changed wffdy I/O according to the optimal file system blocksidénese
include the editqothe assemblefoader remote file cop, the text formatting programs, and the C compiler

The standard error output has traditionally beeruffaled to preent delay in presenting the output
to the userand to preent it from being lost if bffers are not flushed. The inordinate expense of sending
single-byte packets through the netwled us to impose auffering scheme on the standard error stream.
Within a single call tdprintf, dl output is luffered temporarily Before the call returns, all output is
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flushed and the stream is again markedutfebed. Asbefore, the normal block or linauffering mecha-
nisms can be used instead of the default behavior.

It is possible for programs with good intentions to unintentionally defeat the standard 1/O dibrary’
choice of I/O lffer size by using theetbufcall to assign an outputfier. Because of portability require-
ments, the defaultuffer size provided bgetbufis 1024 bytes; this can lead, once again, to adderthead.

One such program with this problemas\cat, there are undoubtedly other standard system utilities with
similar problems as the system has changed much since/dine originally written.

4.2.3. Mail System

The problems discussed in section 3.1.1 prompted significankt on the entire mail systenThe
first problem identified was a bug in tegslogprogram. Themail delivery programsendmailogs all mail
transactions through this process with the 4.2BSD interprocess communicatilitie$. Syslogthen
records the information in a log fil&Jnfortunately,syslogwas performing asyncoperation after each mes-
sage it rece@ed, whether it was logged to a file or not. This wreakedbh@n the efectiveness of the
buffer cache and explained, to a large exteny s#mding mail to large distribution lists generated such a
heary load on the system (one syslog message generated for each message recipient causing almost a
continuous sequence of sync operations).

The hashed data base files were installed in all mail programs, resulting in a order of magnitude
speedup on large distribution lists. The codébin/mail that notifies theeomsatprogram when mail has
been delrered to a user as changed to cache host table lookups, resulting in a similar speedugeon lar
distribution lists.

Next, the file locking &cilities provided in 4.2BSDffock(2), were used in place of the old locking
mechanism. Thenail system pnraously usedlink and unlink in implementing file locking primities.
Because these operations usually modify the contents of directorjesethere synchronous disk opera-
tions and cannot takadvantage of the name cache maintained by the systémlink requires that the
entry be found in the directory so that it can be nemtiplink requires that the directory be scanned to
insure that the name does not alreaxigte By contrast the advisory locking facility in 4.2BSD ifi@ént
because it is all done with in-memory tables. Thus, the mail system was modified to use the file locking
primitives. Thisyielded another 10% cut in the basiedead of deliering mail. Extensve profiling and
tuning ofsendmailand compiling it without debugging code reduced tetead by another 20%.

4.2.4. Netvork Servers

With the introduction of the network facilities in 4.2BSD, a myriad of services becasitabbe,
each of which required its own daemon proceédany of these daemons were rarely Vieeused, yet thg
lay asleep in the process table consuming system resources and generally slowing down respiverse.
than haing mary servers started at boot time, a single serinetd was substituted. Thigprocess reads a
simple configuration file that specifies the services the system is willing to support and listens for service
requests on each servisdnternet port. When a client requests service the appropriate server is created and
passed a service connection as its standard irerers that require the identity of their client may use
the getpeernamesystem call; likwise getsocknamenay be used to find out a ser's local address without
consulting data base files. This scheme is attadtr several reasons:

» iteliminates as manas a @zen processes, easing systemrtoead and allowing the file and text tables
to be made smaller,

» seners need not contain the code required to handle connection queueing, simplifying the programs,
and

» installing and replacing servers becomes simpler.

With an increased numbers of networks, both local atetreal to Berkley, we found that the \er-
head of the routing process was becoming inordinately Hggaeral changes were made in the routing
daemon to reduce this load. Routes to external networks are no longer exchanged by routers on the internal
machines, only a route to a defaulitgvay. This reduces the amount of network traffic and the time
required to process routing messages. In addition, the routing daaas@rafiled and functions responsi-
ble for large amounts of time were optimized. The major changes wastea liashing scheme, and inline
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expansions of the ubiquitous byte-swapping functions.

Under certain circumstances, when output was lldckttempts by the remote login process to send
output to the user were rejected by the system, although asphémtcall had indicated that data could be
sent. Thisresulted in continuous attempts to write the data until the remote user restarted thiput.
problem was initially @oided in the remote login hand|end the original problem in the kernel has since
been corrected.

4.2.5. TheC Run-time Library

Several people hee found poorly tuned code in frequently used routines in the C library [Lank-
ford84]. Inparticular the running time of the string routines can be cut in half by rewriting them using the
VAX string instructions. The memory allocation routinesén&een tuned to aste less memory for mem-
ory allocations with sizes that are a power df.tvCertainlibrary routines that did file input in one-charac-
ter reads hae been correctedOther library routines includinfyead andfwrite have keen rewritten for &f
ciengy.

4.2.6. Csh

The C-shell was cagrted to run on 4.2BSD by writing a set of routines to simulate the old jobs
library. While this pravided a functioning C-shell, it was grossly inefficient, generating up to twenty sys-
tem calls per promptThe C-shell has been modified to use the signal facilities directly cutting the
number of system calls per prompt in haMdditional tuning was done with the help of profiling to cut the
cost of frequently used facilities.
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5. Functional Extensions

Some of the facilities introduced in 4.2BSD were not completely implemeAtedmportant part of
the effort that went into 4.3BSD was to clean up and unify bathand old facilities.

5.1. Kernel Extensions

A significant efort went into improving the networking part of therkel. Thework consisted of fix-
ing bugs, tuning the algorithms, andvaeping the lowest l&ls of the system to better handle heteroge-
neous network topologies.

5.1.1. SubnetsBroadcasts and Gateways

To dlow sites to expand their network in an autonomous and ordashidn, subnetworks @ been
introduced in 4.3BSD [GADS85]This facility allows sites to subdivide their local Internet address space
into multiple subnetark address spaces that are visible only by hosts at that Titeiff-site hosts
machines on a site’'sibnetworks appear to reside on a single ratw Therouting daemon has been
reworked to provide routing support in this type of environment.

The deéult Internet broadcast address isvrepecified with a host part of all one’s, rather than all
zeros. Thebroadcast address may be set at boot time on a per-interface basis.

5.1.2. InterfaceAddressing

The oganization of netwrk interfaces has beenwrerked to more cleanly support multiple netk
protocols. Netwrk interfaces no longer contain a hestidress on that network; instead each iatsaf
contains a pointer to a list of addresses assigned to thaaggerThigpermits a single interface to support,
for example, Internet protocols at the same time as XNS protocols.

The Address Resolution Protocol (ARP) support for 1@amge/second Ethernett has been made
more flexible by allowing hosts to act as afearing housé’f or hosts that do not support AR addi-
tion, system managers\eamore control @er the contents of the ARP translation cache and may interac-
tively interrogate and modify the cachabntents.

5.1.3. UserControl of Network Buffering

Although the system allocates reasonable default amountsfefibg for most connections, certain
operations such as file system dumps to remote machines benefit from significant increafesnig b
[Walsh84]. Thesetsokopt system call has been extended tovalkoich requests. In additioggsodkopt
and setsokopt, are nav interfaced to the protocol Vel allowing protocol-specific options to be manipu-
lated by the user.

5.1.4. Numberof File Descriptors

To dlow full use of the mandescriptor based servicegadable, the previous hard limit of 30 open
files per process has been reldx Thechanges entailed generalizisglectto handle arrays of 32-bit
words, removing the dependgnon file descriptors from the page table entries, and limiting most of the
linear scans of a procesdile table. The default per-process descriptor limit was raised from 20 to 64,
though there are no longenamard upper limits on the number of file descriptors.

5.1.5. Kernel Limits

Many internal kernel configuration limits Y& been increased by suitable modifications to data struc-
tures. Thdimit on physical memory has been changed from §amge to 64 mgabyte, and the limit of
15 mounted file systems has been changed to 255. The maximum file system size has been increased to 8
gigabyte, number of processes to 65536, and per process size tg@ytmef data and 64 rmgebyte of
stack. Notethat these are upper bounds, theadiflimits for these quantities are tuned for systems with

101 Ethernet is a trademark of Xerox.
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4-8 mayabyte of physical memory.

5.1.6. MemoryManagement

The global clock page replacement algorithm used ¥e haingle hand that was used both to mark
and to reclaim memoryThe first time that it encountered a pageduld clear its reference bit. If the ref-
erence bit was still clear on its next pass across the page, it would reclaim thd pagese of a single
hand does not erk well with large physical memories as the time to complete a singlitien of the
hand can ta& up to a nmute or more.By the time the hand gets around to the marked pages, the informa-
tion is usually no longer pertinenDuring periods of sudden shortages, the page daemon will not be able to
find ary reclaimable pages until it has completed a fullohation. To dleviate this problem, the clock
hand has been split into aveeparate handsThe front hand clears the reference bits, the back hanevollo
a mnstant number of pages behind reclaiming pages that still deared reference bits. While the code
has been written to alothe distance between the hands to &ged, we haee rot found ag algorithms
suitable for determining hoto dynamically adjust this distance.

The configuration of the virtual memory system used to require a significant understanding of its
operation to do such simple tasks as increasing the maximum process size. This process has been signifi-
cantly impraed so hat the most common configuration parameters, such as the virtual memory sizes, can
be specified using a single option in the configuration Biendard configurations support data and stack
segments of 17, 33 and 64 gabytes.

5.1.7. Signals

The 4.2BSD signal implementation would pustesal words onto the normal run-time stack before
switching to an alternate signal stackhe 4.3BSD implementation has been corrected so that the entire
signal handles gate is na pushed onto the signal stack. Another limitation in the original signal imple-
mentation was that it used an undocumented system call to return from slgsais.could not write their
own return from exceptions; 4.3BSD formally specifiesshggeturnsystem call.

Many existing programs depend on interrupted system cale restartable system call semantics of
4.2BSD signals caused manf these programs to breako smplify porting of programs from inferior
versions ofuNix the sigvecsystem call has been extended so that programmers may specify that system
calls are not to be restarted after particular signals.

5.1.8. Systeniogging

A system logging facility has been added that serstadt messages to the syslog daemon for log-
ging in /usrfadm/messages and possibly for printing on the system cohlelesvised scheme for logging
messages eliminates the time lag in updating the messages file, unifies the format of kernel messages, pro-
vides a finer granularity of controver the messages that get printed on the console, and eliminates the
degradation in response during the printing of low-priority kernel messa&gsverable system errors and
common resource limitations are logged using thalify. Most system utilities such as init and login,
have been modified to log errors to syslog rather than writing directly on the console.

5.1.9. Windows

The tty structure has been augmented to hold information about the size of an associatgdwindo
terminal. Theseizes can be obtained by programs such as editors that wanttdHensize of the screen
they are manipulating. When these sizes are changedyaigeal, SIGWINCH, is sent the current process
group. Theeditors hae been modified to catch this signal and reshape theiv gfethe world, and the
remote login program and servemncooperate to propagate windaizes and winde size changes across
a retwork. Otherprograms and libraries such as curses that need the width or height of the seeeen ha
been modified to use this facility as well.

5.1.10. Configurationof UNIBUS Devices

The UNIBUS configuration routines V& been extended to allo auto-configuration of dedicated
UNIBUS memory held by déces. Thenew routines simplify the configuration of memory-mapped
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devices and correct problems occurring on reset of the UNIBUS.

5.1.11. DiskRecovery from Errors

The MASSBUS disk dvier's aror recavery routines hae keen fixed to retry before correcting ECC
errors, support ECC on bad-sector replacements, and correctly attempt retries after earlisecatreat
in the same transfeiThe error messages are more accurate.

5.2. FunctionalExtensions to Libraries and Utilities

Most of the changes to the utilities and librariegehlaeen to allev them to handle a more general set
of problems, or to handle the same set of problems more quickly.

5.2.1. NameSelrver

In 4.2BSD the name resolution routinggtfiostbynamegetservbynameetc.) were implemented by
a <t of database files maintained on the local machineonsistencies or obsolescence in these files
resulted in inaccessibility of hosts or services. In 4.3BSD these files may be replaced bgri natae
sener that can insure a consistentwief the name space in a multimachinevisnment. Thisname
server operates in accordance with Internet standards for service on the ARPANET [Mockapetris83].

5.2.2. SystenManagement

A new uility, rdist, has been pnded to assist system managers in keeping all their machines up to
date with a consistent set of sources and binaAemaster set of sources may reside on a single central
machine, or be distributed at (kmo) locations throughout the ironment. N& versions ofgety, init,
andlogin mege the functions of seral files into a single place, and allanore flexibility in the startup of
processes such as wivdmanagers.

The nev utility timedkeeps the time on a group of cooperating machines (within a single LAN) syn-
chronized to within 30 millisecondst does its corrections using ameystem call that changes the rate of
time adwance without stopping orversing the system clock. It normally selects one machine to act as a
master If the master dies or is partitioned, avmaster is electedOther machines may participate in a
purely slae role.

5.2.3. Routing

Many bugs in the routing daemon\eleen fixed; it is considerably more robust, and/ nmder-
stands hw to properly deal with subnets and point-to-point nates. Itsoperation has been made more
efficient by tuning with the use ofkecution profiles, along with inline expansion of common operations
using the kernel':line optimizer.

5.2.4. Compilers

The symbolic deliggerdbxhas had mannew features added, and all the known bugsdixInaddi-
tion dbx has been extended to work with thesBal compiler The fortran compilef77 has had numerous
bugs fixed. TheC compiler has been modified so that it can, optiongtyerate single precision floating
point instructions when operating on single precision variables.
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6. Security Tightening

Since we do not wish to encourage rampant system cracking, we describe only briefly the changes
made to enhance security.

6.1. Generickernel

Several loopholes in the process tracing facilitwédeen corrected. Programs being traced may not
be eecuted; &ecuting programs may not be traced. Programs may netdarinput to terminals to which
they do mot have read permission. The handling of process groups has been tightened to eliminate some
problems. Whera program attempts to change its process group, the system checks to see if the process
with the pid of the process group was started by the same lfigeexists and was started by afdifent
user the process group humber change is denied.

6.2. SecurityProblems in Utilities

Setuid utilities no longer use tip@penor systemibrary routines. Access to thesknels data struc-
tures through the kmem device iswncestricted to programs that are set grougkichém”. Thus many
programs that used to run with rootyileges no longer need to do so. Access to disk devicesvisoo
trolled by an ‘operator’ group id; this permission allows operators to function without being the-super
user Only users in group wheel can do “su root”; this restrictionvaicadministrators to define a super
user access list. Numerous holesénd&een closed in the shell to peat users from gaining priieges
from set user id shell scripts, although use of such scripts is still highly discouraged on systems that are
concerned about security.
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7. Conclusions

4.2BSD, while functionally superior to 4.1BSD, lacked much of the performance tuning required of a
good system.We found that the distributed system spent 10-20% more time in the kernel than 4.1BSD.
This added werhead combined with problems withveeal user programs gerely limited the eerall per
formance of the system in a general timesharing environment.

Changes made to the system since the 4.2BSD distribhare diminated most of the added system
overhead by replacing old algorithms or introducing additional cacheing schemes. The combined caches
added to the name translation process reduceviirage cost of translating a pathname to an inode by
more than 50%. These changes reduce the percentage of time spent running in the system by nearly 9%.

The use of silo input on terminal ports only when necessary hagedllihe system tovaid a lage
amount of software interrupt processinQbsenations shw that the system is forced to field about 25%
fewer interrupts than before.

The kernel changes, combined with maig fixes, mak the system much more respomsin a
general timesharing eimonment. Thel.3BSD Berleley UNIX system nav appears capable of supporting
loads at least as large as those supported under 4.1BSD whitipgall the ne interprocess communi-
cation, networking, and file system facilities.
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Appendix A — Benchmark sources

The programs shwn here run under 4.2 with only routines from the standard libraries. When run under 4.1
they were augmented with@etpagesizeroutine and a copof therandomfunction from the C library The
vforksandvexecgrograms are constructed from floeks andexecsprograms, respeetly, by substituting

calls tofork with calls tovfork.

syscall
/*
* System call @erhead benchmark.
*
main(argc, argv)
char *argVv([];

{
register int ncalls;
if (argc < 2) {
printf("usage: %s #syscalls0, argv[0]);
exit(1);
}
ncalls = atoi(argv[1]);
while (ncalls-- > 0)
(void) getpid();
}
csw
/*

* Context switching benchmark.

*

* Force system to context switch 2*nsigs

* times by forking and exchanging signals.
* To calculate systemwerhead for a context
* switch, the signocsw program must be run
* with nsigs. Overhead is then estimated by
*  tl=time csw<n>

*  t2 =time signocsw <n>

*  overhead =tl1 -2 * t2;

*

#include <signal.h>

int  sigsub();
int  otherpid;
int  nsigs;

main(argc, argv)
char *argVv([];
{

int pid;

if (argc < 2) {
printf("usage: %s nsignals0, argv[0]);
exit(1);

}

nsigs = atoi(argv[1]);

signal(SIGALRM, sigsub);
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otherpid = getpid();

pid = fork();
if (pid !=0) {
otherpid = pid;
kill(otherpid, SIGALRM);
}
for (;;)
sigpause(0);
}
sigsub()
{
signal(SIGALRM, sigsub);
kill(otherpid, SIGALRM);
if (--nsigs <= 0)
exit(0);
}
signocsw
/*
* Signal without context switch benchmark.
*
#include <signal.h>
int pid;
int  nsigs;
int  sigsub();

main(argc, argv)
char *argVv([];

{
register int i;
if (argc < 2) {
printf("usage: %s nsignals0, argv[0]);
exit(1);
}
nsigs = atoi(argv[1]);
signal(SIGALRM, sigsub);
pid = getpid();
for (i=0; i < nsigs; i++)
kill(pid, SIGALRM);
}
sigsub()
{
signal(SIGALRM, sigsub);
}
pipeself
/*

* | PC benchmark,
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* write to self using pipes.
*

main(argc, argv)
char *argv([];
{
char buf[512];
int fd[2], msgsize;
register int i, iter;

if (argc < 3) {
printf("usage: %s iterations message-size0, argv|[0]);
exit(1);

}

argc--, argv++;

iter = atoi(*argv);

argc--, argv++;

msgsize = atoi(*argv);

if (msgsize > sizeof (buf) || msgsize <= 0) {
printf("%s: Bad message size.0, *argv);
exit(2);

}

if (pipe(fd) < 0) {
perror("pipe");
exit(3);

}

for (i=0;i<iter; i++) {
write(fd[1], buf, msgsize);
read(fd[0], buf, msgsize);

}

pipediscard

/*

* | PC benchmarkl,

* write and discard using pipes.
*

main(argc, argv)
char *argv([];
{
char buf[512];
int fd[2], msgsize;
register int i, iter;

if (argc < 3) {
printf("usage: %s iterations message-size0, argv|[0]);
exit(1);

}

argc--, argv++;

iter = atoi(*argv);

argc--, argv++;

msgsize = atoi(*argv);

if (msgsize > sizeof (buf) || msgsize <= 0) {
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printf("%s: Bad message size.0, *argv);
exit(2);

}
if (pipe(fd) < 0) {
perror(“pipe");
exit(3);
}
if (fork() == 0)
for (i=0;i < iter; i++)
read(fd[0], buf, msgsize);

else
for (i=0;i < iter; i++)
write(fd[1], buf, msgsize);
}
pipeback
/*

* | PC benchmark,
* read and reply using pipes.

*

* Process forks and exchanges messages
* over a gpe in a request-response fashion.

*

main(argc, argv)

{

char *argv([];

char buf[512];
int fd[2], fd2[2], msgsize;
register int i, iter;

if (argc < 3) {
printf("usage: %s iterations message-size0, argv|[0]);
exit(1);

}

argc--, argv++;

iter = atoi(*argv);

argc--, argv++;

msgsize = atoi(*argv);

if (msgsize > sizeof (buf) || msgsize <= 0) {
printf("%s: Bad message size.0, *argv);
exit(2);

}

if (pipe(fd) < 0) {
perror("pipe");
exit(3);

}

if (pipe(fd2) < 0) {
perror("pipe");
exit(3);

}
if (fork() == 0)
for (i=0;i<iter; i++) {
read(fd[0], buf, msgsize);
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}

forks
/*

write(fd2[1], buf, msgsize);

}
else
for (i=0;i<iter; i++) {
write(fd[1], buf, msgsize);
read(fd2[0], buf, msgsize);
}

* Benchmark program to calculate fork+wait
* overhead (approximately). Process

* forks and exits while parent waits.

* The time to run this program is used

* in calculating &ec overhead.

*

main(argc, argv)

{

char *argVv([];

register int nforks, i;
char *cp;
int pid, child, status, brksize;

if (argc < 2) {
printf("usage: %s number-of-forks sbrk-size0, argv[0]);
exit(1);
}
nforks = atoi(argv[1]);
if (nforks < 0) {
printf("%s: bad number of forks0, argv[1]);
exit(2);
}

brksize = atoi(argv[2]);

if (brksize < 0) {
printf("%s: bad size to sbrk0, argv[2]);
exit(3);

}
cp = (char *)sbrk(brksize);
if ((int)cp ==-1) {
perror(“sbrk");
exit(4);
}
for (i=0; i < brksize; i += 1024)
cpli] =i;
while (nforks-- > 0) {
child = fork();
if (child == -1) {
perror(“fork™);
exit(-1);
}
if (child == 0)
_exit(-1);
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while ((pid = wait(&status)) != -1 && pid != child)

}
exit(0);
}
execs
/*

* Benchmark program to calculateee

* overhead (approximately). Process

* forks and recs "null" test program.

* The time to run the fork program should
*then be deducted from this one to

* estimate the werhead for the xec.

*

main(argc, argv)
char *argVv([];
{

register int ngecs, i;
char *cp, *sbrk();
int pid, child, status, brksize;

if (argc < 3) {
printf("usage: %s number-ofecs sbrk-size job-name0,
argv[0]);
exit(1);
}

nexecs = atoi(argv[1]);

if (nexecs < 0) {
printf("%s: bad number ofxecs0, argv[1]);
exit(2);

}

brksize = atoi(argv[2]);

if (brksize < 0) {
printf("%s: bad size to sbrkO0, argv[2]);
exit(3);

}

cp = sbrk(brksize);

if ((int)cp ==-1) {
perror("sbrk");
exit(4);

}

for (i=0; i < brksize; i += 1024)
cpli] =i;

while (nexecs-- > 0) {
child = fork();
if (child == -1) {

perror(“fork™);
exit(-1);

}
if (child == 0) {

execv(argv[3], argv);
perror("eecv");
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_exit(-1);
}
while ((pid = wait(&status)) != -1 && pid != child)
}
exit(0);
}
nulljob
/*
* Benchmark "null job" program.
*

main(argc, argv)
char *argVv([];

{
exit(0);
}
bigjob
/*
* Benchmark "null big job" program.
*

/* 250 here is intended to approximatesuéxt+data size */
char space[1024250] = "force into data segment";

main(argc, argv)

char *argVv([];
{

exit(0);
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segpage

/*

* Sequential page access benchmark.

*

#include <sys/vadvise.h>

char *walloc();

main(argc, argv)

{

char *argVv([];

register i, niter;

register char *pf, *lastpage;

int npages = 4096, pagesize, vflag = 0;
char *pages, *name;

name = argv[0];
argc--, argv++;

again:

if (argc < 1) {

usage:

printf("usage: %s [ -v ] [ -p #pages ] niter0, name);
exit(1);
}
if (strcmp(*argy "-p") == 0) {
argc--, argv++;
if (argc < 1)
goto usage;
npages = atoi(*argv);
if (npages <=0) {
printf("%s: Bad page count.0, *argv);
exit(2);
}
argc--, argv++;
goto again;
}
if (strcmp(*argy "-v") == 0) {
argc--, argv++;
vilag++;
goto again;
}
niter = atoi(*argv);
pagesize = getpagesize();
pages = valloc(npages * pagesize);
if (pages == (char *)0) {
printf("Can't allocate %d pages (%2.1f mabytes).0,
npages, (npages * pagesize) / (1024. * 1024.));

exit(3);
}
lastpage = pages + (npages * pagesize);
if (vflag)

vadvise(VA_SEQL);
for (i = 0; i < niter; i++)
for (pf = pages; pf < lastpage; pf += pagesize)
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*pf =1,
}
randpage
/*
* Random page access benchmark.
*

#include <sys/vadvise.h>

char *walloc();
int  rand();

main(argc, argv)
char *argVv([];
{

register int npages = 4096, pagesize, pn, i, niter;
int vflag = 0, debug = 0;
char *pages, *name;

name = argv[0];
argc--, argv++;
again:
if (argc < 1) {
usage:
printf("usage: %s [ -d ] [ -v ] [ -p #pages ] niter0, name);
exit(1);
}
if (strcmp(*argy "-p") == 0) {
argc--, argv++;
if (argc < 1)
goto usage;
npages = atoi(*argv);
if (npages <=0) {
printf("%s: Bad page count.0, *argv);
exit(2);
}
argc--, argv++;
goto again;
}
if (strcmp(*argy "-v") == 0) {
argc--, argv++;
vilag++;
goto again;
}
if (strcmp(*argy "-d") == 0) {
argc--, argv++;
debug++;
goto again;
}
niter = atoi(*argv);
pagesize = getpagesize();
pages = valloc(npages * pagesize);
if (pages == (char *)0) {
printf("Can't allocate %d pages (%2.1f mabytes).0,
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npages, (npages * pagesize) / (1024. * 1024.));
exit(3);

}
if (vflag)
vadvise(VA_ANOM);
for (i=0; i < niter; i++) {
pn = random() % npages;
if (debug)
printf("touch page %d0, pn);
pages[pagesize * pn] = 1;

}
}
gausspage
/*

* Random page access with

* a gaussian distribution.

*

* Allocate a large (zero fill on demand) address

* space and fault the pages in a random gaussian
* order.

*

float sqrt(),log(), rnd(), cos(), gauss();
char *walloc();
int  rand();

main(argc, argv)
char *argv([];
{

register int pn, i, nitedelta;

register char *pages;

float sd = 10.0;

int npages = 4096, pagesize, debug = 0;
char *name;

name = argv[0];
argc--, argv++;
again:
if (argc < 1) {
usage:
printf(

Appendix A — Benchmark sources

"usage: %s [ -d ] [ -p #pages ] [ -s standard-deviation ] iterations0, name);

exit(1);
}
if (strcmp(*argy "-s") == 0) {
argc--, argv++;
if (argc < 1)
goto usage;
sscanf(*argy"%f", &sd);
if (sd <= 0) {
printf("%s: Bad standard deviation.0, *argv);
exit(2);

DRAFT November 30, 1985

McKausick, et. al.



Performance -37-

}

float

argc--, argv++;
goto again;
}
if (strcmp(*argy "-p") == 0) {
argc--, argv++;
if (argc < 1)
goto usage;
npages = atoi(*argv);
if (npages <=0) {
printf("%s: Bad page count.0, *argv);
exit(2);
}
argc--, argv++;
goto again;
}
if (strcmp(*argy "-d") == 0) {
argc--, argv++;
debug++;
goto again;
}
niter = atoi(*argv);
pagesize = getpagesize();
pages = valloc(npages*pagesize);
if (pages == (char *)0) {
printf("Can't allocate %d pages (%2.1f mabytes).0,
npages, (npages*pagesize) / (1024. * 1024.));
exit(3);
}
pn=0;
for (i=0; i < niter; i++) {
delta = gauss(sd, 0.0);
while (pn + delta < 0 || pn + delta > npages)
delta = gauss(sd, 0.0);
pn += delta;
if (debug)
printf("touch page %d0, pn);
else
pages[pn * pagesize] = 1;

gauss(sd, mean)

{

float
rnd()

float sd, mean;
register float ga, gb;
ga = sqrt(log(rnd()) * -2.0);

gb = 3.14159 * rnd();
return (ga * cos(gb) * sd + mean);
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{

static int seed = 1;

static int biggest = OxTffff ;

return ((float)rand(seed) / (float)biggest);
}
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run (shell script)

#! /bin/csh -fx

# Script to run benchmark programs.
#

date

malke dean; time make

time syscall 100000

time seqpage -p 7500 10

time seqpage -v -p 7500 10

time randpage -p 7500 30000

time randpage -v -p 7500 30000
time gausspage -p 7500 -s 1 30000
time gausspage -p 7500 -s 10 30000
time gausspage -p 7500 -s 30 30000
time gausspage -p 7500 -s 40 30000
time gausspage -p 7500 -s 50 30000
time gausspage -p 7500 -s 60 30000
time gausspage -p 7500 -s 80 30000
time gausspage -p 7500 -s 10000 30000
time csw 10000

time signocsw 10000

time pipeself 10000 512

time pipeself 10000 4

time udgself 10000 512

time udgself 10000 4

time pipediscard 10000 512

time pipediscard 10000 4

time udgdiscard 10000 512

time udgdiscard 10000 4

time pipeback 10000 512

time pipeback 10000 4

time udgback 10000 512

time udgback 10000 4

size forks

time forks 1000 O

time forks 1000 1024

time forks 1000 102400

size vforks

time vforks 1000 O

time vforks 1000 1024

time vforks 1000 102400

countenv

size nulljob

time execs 1000 O nulljob

time execs 1000 1024 nulljob

time execs 1000 102400 nulljob

time vexecs 1000 O nulljob

time vexecs 1000 1024 nulljob

time vexecs 1000 102400 nulljob

size bigjob

time execs 1000 0 bigjob

time execs 1000 1024 bigjob
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time execs 1000 102400 bigjob

time vexecs 1000 0 bigjob

time vexecs 1000 1024 bigjob

time vexecs 1000 102400 bigjob

# fill environment with 1024 bytes

seten a 012345678901234567890123456789012345678901234567890123456780123456789
setern b 012345678901234567890123456789012345678901234567890123456780123456789
seten ¢ 012345678901234567890123456789012345678901234567890123456780123456789
setern d 012345678901234567890123456789012345678901234567890123456780123456789
seten e 012345678901234567890123456789012345678901234567890123456780123456789
seten f 012345678901234567890123456789012345678901234567890123456780123456789
seten g 012345678901234567890123456789012345678901234567890123456780123456789
seten h 012345678901234567890123456789012345678901234567890123456780123456789
seten i 012345678901234567890123456789012345678901234567890123456780123456789
seten j 012345678901234567890123456789012345678901234567890123456780123456789
seten k 012345678901234567890123456789012345678901234567890123456780123456789
seten | 012345678901234567890123456789012345678901234567890123456780123456789
setewr m 012345678901234567890123456789012345678901234567890123456780123456789
setern n 012345678901234567890123456789012345678901234567890123456780123456789
seten 0 012345678901234567890123456789012345678901234567890123456780123456789
countenv

time execs 1000 O nulljob

time execs 1000 1024 nulljob

time execs 1000 102400 nulljob

time execs 1000 0 bigjob

time execs 1000 1024 bigjob

time execs 1000 102400 bigjob
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