New Featuresin Curses and Terminfo

Pavel Curtis

1. Introduction

This document describeswédeatures that are being added to the Bleskcur ses subroutine pack-
age. lItalso describes the weterminfo database, which replaces the Baely termcap database. The
emphasis is on the weeatures.

2. New Featuresin Curses
This section describes the enhancements to curses. Bhiefgnhancements are:

a. Cursess smarter It can tale alvantage of insert/delete line/charact@y default, it will not use
insert/delete line. Sedlok().)

Qurses uses the newr minfo data base, as described in the next section.

Cursesvorks on more terminals.

Itis possible to use more than one terminal at a time.

\Mideo attributes can be displayed iry@ombination.

Curseshandles terminals with the “magic cookieideo attribute glitch.

Thefunction and arney keys on erminals can be input as thoughythigere a single character.

S@e ™o 20T

Theres a user accessible scrolling regionglike DEC VT100.

If the programmer restricts his code to a subset of the full cursdd,| MeCURSES version can be
used, which is smaller and faster.

J- Two routines are provided for setting the tty bits to the proper state for shell escapes and control-Z
suspensions.

k. Onsystems that support it (currently only 4.1BSD), if the user types something during an update, the
update will stop, pending a future update. This is useful when the userJstal $eys, each of
which causes a good deal of output.

l. Theroutinegetstr () is smarter - it handles the users erase and kill characters, and echos its input.
m. Thefunctionlongname() is nawv useful and actually works.

n. Nodelaymode allows “real timé’programs to be written with the same in&&é on both systems.
Setting the flag causestch to return -1 if no input is waiting.

(o} Several useful routines are provided to enhance portability.

2.1. CursesisSmarter

The algorithm used by curses has been replaced with an algorithm #watrimkaccount insert and
delete line and character functions,véitable, in the terminal. By default, curses will not use insert/delete
line. Thiswas ot done for performance reasons, since there is no speed pewalitgdn Ratherit was
found that some programs do not need thidlity, and that if curses uses insert/delete line, the result on the
screen can be visually anying. Sincemost simple programs using curses do not need this, and since the
old curses did not use it, the default isvoid insert/delete line. Call the routine

idlok (stdscr, TRUE);

to enable insert/delete line, if your application needs it. Insert/delete characteayis ebnsidered.

2.2. Additional Terminals

Curses works on a larger class of terminals than the prevéosi®n. Erminfo is able to address the
cursor on more kinds of terminals. Curses will wovkreif absolute cursor addressing is not possible, as
long as the cursor can be wed from ary location to ap other location. It considers local motions, param-
eterized motions, home, and carriage return.

Curses is still aimed at full duplex, alphanumeric, video termindis.attempt is made to handle
half-duplex, synchronous, hard gopr bitmapped terminals.

Curses handles terminals with the “magic cookie glitamtheir video attribtes’.‘ This glitch means
that a change in video attutes is implemented by storing a “magic cookie’a location on the screen.
This “cookie” takes up a space, panting an exact implementation of what the programmanted.
Curses takes thexa space into account, and vee part of the line to the right, as necessaly some
cases, this will unaidably result in losing text from the right hand edge of the scrBeisting spaces are
taken advantage of.

2.3. Multiple Terminals

Some applications need to display text on more than one terminal, controlled by the same process.
Even if the terminals are different, theaneurses can handle this.

All information about the current terminal is kept in a global variable
struct screen *SP;

Although the screen structure is hidden from the,ukerC compiler will accept declarations @riables
which are pointers. The user program should declare one screen paiigblevfor each terminal it wishes
to handle. The routine

struct screen *
newternftype, fd)
char *type;

FILE *fp;

will set up a ne& terminal of the gien terminal type which does output on file pointer fpcall to initscr()
is essentiallynewternfgeten(“TERM”), stdout). A program wishing to use more than one terminal
should useewterm()for each terminal and ga the value returned as a reference to that terminal.

To switch to a different terminal, call

struct screen *
set_ternfterm)
struct screen *term;

The old value of SP will be returnedou should not assign directly to SP because certain other global
variables must also be changed.

All curses routines wlays affect the current terminallo handle seeral terminals, switch to each
one in turn withset_term() and then access it. Each terminal must be set up neittterm() and closed
down withendwin()

2.4. Video Attributes

Video attributes can be displayed iny aombination on terminals with this capabilitfhey are
treated as an extension of the standout capalilitich is still present.

Each character position on the screen has 16 bits of information associated Withtiiese bits are
the character to be displayed,Viegy separate bits for 9 video atties. Thesebits are used for standout,
underline, rgerse video, blink, dim, bold, blank, protect, and alternate character set. Standout is taken to
be whatger highlighting works best on the terminal, and should be usedypragram that does not need
specific or combined attuites. Underliningreverse video, blink, dim, and bold are the usual video

*
This feature is not supported in the current test release. It will be implemented in the official distribution.

-3-

attributes. Blankmeans that the character is displayed as a space, for security réasmasted and alter
nate character set are dependent on the particular terniihaluse of these last three bits is subject to
change and not recommended.

The routines to use these attributes include

attrse(attrs) wattrsefattrs)
attron(attrs) wattron(attrs)
attroff(attrs) wattroff(attrs)
standouf) wstandouf)
standeng) wstanden()

Attributes, if gien, can be ancombination of A SANDOUT, A_UNDERLINE, A REVERSE,
A _BLINK, A _DIM, A BOLD, A INVIS, A PROTECT, and A_ALTCHARSET These constants, defined
in curses.h, can be combined with the C | (or) operator to get multipleitasribttrset() sets the current
attributes to the gien attr; attron() turns on the gien attrs in addition to aw attributes that are already on;
attroff() turns of the gven atributes, without affecting anothers. standout()and standend()are equi-
alent toattron(A_STANDOUT) andattroff(A_STANDOUT).

Since standout is stored in the 8th bit of the byte, it is possible to recompile curses so that only 8
bits are stored for each characteaking a smaller curses, and still be able to use standout. Also, programs
that restrict themselves to the routir#andout()and standend()will work with both the ne and old
curses.

If the particular terminal does notJeathe particular attribute or combination requested, curses will
attempt to use some other attribute in its place. If the terminal has no highlighting at all, all attributes will
be ignored.

2.5. Function Keys

Many terminals hae gecial leys, such as arvokeys, lkeys to gase the screen, insert or deletd,te
and leys intended for user functions. The particular sequences these terminals send differs from terminal to
terminal. Curseallows the programmer to handle thesgsk

A program using functiondys should turn on thedypad by calling
keypadstdscr, TRUE)

at initialization. This will cause special characters to be passed through to the program by the function
getch(). These kys have constants which are defined in cursesliney havevalues starting at 0401, so
they should not be stored inchar variable, as significant bits will be lost.

A program using functiondys should aoid using theescAPekey, snce most sequences start with
escape, creating an ambiguit@urses will set a one second alarm to deal with this ambjguitich will
cause delayed response to the escagelkis a good idea to woid escape in gncase, since there iven-
tually pressure for neargnyscreen oriented program to acceptarkey input.

2.6. Scrolling Region
There is a user accessible scrolling regiorg file DEC VT100.Normally, it is set to the entire win-
dow, but the calls

setscreg(top, bot)
wsetscreg(win, top, bot)

set the scrolling region fatdscr or the gven window to any combination of top and bottom ngamns. |If
scrolling has been enabled wabrollok scrolling will take pace only within that winde. See theCurses
Reference Manudbr the detailed semantics of this construct.

2.7. Mini—Curses*

*
This feature is not supported in the current test release. It will be implemented in the official distribution.

The nev curses is bigger than the old one, and has ty éapn the current winde to an internal
screen image forvery call torefresh() If the programmer is only interested in screen output optimization,
and does not want the windowing or input functions, an iterto the lower iel routines is wailable.

This will make the program somewhat smaller amdtér The interface is a subset of full curses, so that
conversion between theVels is not necessary to switch from mini-curses to full curses.

The subset mainly requires you tmi use of more than the one windstdscr. Thus, all functions
beginning with ‘w’’ are generally undefinedCertain high lgel functions that are cesnient but not
essential are also notailable, includingprintw() and scanw() Also, the input routingyetch() cannot be
used with mini-curses. Features implemented atvddwd, such as use of hardware insert/delete line and
video attributes, arevailable in both ersions. Alsomode setting routines such asreak()andnoecho()
are allaved. Sedahe manual page for the exact list of routines allowed with mini-curses.

To access mini-curses, ad®DMINICURSES to the CFLAGS in your maile. If you ask for rou-
tines that are not in the subset, the loader will print error messages such as

Undefined:
no_getch
no_waddch

to tell you that the routinegetch() andwaddch()were used but are notailable in the subset. Since the
preprocessor is wolved in the implementation of mini-curses, you must recompile the entire program if
you change from oneevsion to the otherSimilarly, programs compiled with the old curses must be
recompiled for the e curses.

2.8. TTY Mode Functions

In addition to the sa&/restore routinesavetty()and resetty() standard routines arevalable for
going into and out of normal tty mode. These routinesemetterm() which puts the terminal back in the
mode it was in when cursesaw started, anfixterm() which undoes the effects oésetterm() that is,
restores the “current curses mddeéndwin() automatically callsesetterm() and the routine to handle
control-Z (on 4.1BSD systems with process control) also esesterm()andfixterm() The programmer
should use these routines before and after shell escapes, and also if he witesrbigine to handle con-
trol-Z. Theseoutines are alsovailable at theterminfolevel.

2.9. Typeahead Check*

On systems that support it (current only 4.1BSD), if the user types something during an update, the
update will stop, pending a future update. This is useful when the user rapidlyvhitd &eys, each of
which causes a good deal of output. This feature is automatic and cannot be disabled.

2.10. Getstr()

The routinegetstr() is smarter The semantics are slightly fiifent from the oldyestr(), but no
incompatibilities are anticipated. No matter what the settingchbis, strings typed in here are echoed at
the current cursor location. The users erase and kill characters are understood and handled. This makes it
unnecessary for an interaaipogram to deal with erase, kill, and echoing when the user is typing a line of
text.

2.11. Longname()

The functionlongname()is nov useful and actually wrks. Theprevious version required the pro-
grammer to caltgetent()directly and pass the resulting string, along withuéfdpn, to longname() The
string actually returned was the second alias for the terminal, not the long name.

The nev longname(function does not takany aguments. Itreturns a pointer to a static area con-
taining the actual long name of the terminal. No caligtent()is needed, in fact, that routine no longer
exists.

*
This feature is not supported in the current test release. It will be implemented in the official distribution.

2.12. Nodelay Mode
The call

nodelaystdscr, TRUE)

will put the terminal in “nodelay mode’ While in this mode, ayn call to getch() will return -1 if there is
nothing waiting to be read immediatelyhis is useful for writing programs requirinigeal time’ behavior
where the user watches action on the screen and pressgssagn he wants something to happérr

example, the cursor can be moving across the screen, and the user can presslay archange direc-
tion. Thismode is especially useful for games such as PacMan and Spaders$n

2.13. Portability

Several useful routines are primed to enhance portabilityWhile these routines do not directly
relate to terminal handling, their implementation iedént from system to system, and the differences can
be isolated from the user program by including them in curses.

Functionserasechar()and killchar() return the characters which erase one charaaterkill the
entire input line, respeekly. The functionbaudrate()will return the current baud rate, as an grae (For
example, at 9600 baud, the integer 9600 will be returned, not the value B9600 fromhsxggttige routine
flushinp()will cause all typeahead to be throwmag.

2.14. FeaturesNo Longer Supported

In general, an effort has been made to support old features where paddsivieer, there are some
features of the old curses that cannot be supported, due to the change to terminfo, or due to other miscela-
neous causes.

The old curses defined a number ob tetter variables, such as CM, containing termcap capabilities.
These variables are no longer accessible to the useeneral, their semantics are different, as are their
names. Aprogram using primarily theseaniables is really written at the termcapde Also unavailable
are the related variables NONL, Gihd UPPERCASE.

Such programs should be recoded Yoic these capabilities, if at all possible, instead using the
higher level curses functions. If this is not possible, recode at the terminéh I1& program making only
light use can probably be easily changedvaichthese variables completelA program at the terminfo
level that only needs motion optimization should probably still be recoded to use thevielgiolgines, in
order to work on more terminals. If this is not possible, recode at the termuefpdentinuing to use
mvcur() which is still supported. It is not necessary to oalicur()to move o the lower left corner of the
screen before callingndwin()

Some programs (notably rogue) use varibles in <curses.h> whijih Wwih an underline. Use of
these variables and fields is to heided. Mostof the internal structures used by curses are hidden from
the user The variables _tty and _tty ch are no longer accessible. (Since _tty was a version 7 dependent
structure, it was not portable to use iyany.) Useful fields, such as the erase and kill characters, and the
baud rate, can be dismed using the portable functions describedvabo

3. Termlib-Level Changes

The termcap(3) (termlib) library has been consolidated with the curses(3) library to form a ne
curses(3) library The termlib led is very different in the n& version. Theoutinestgetent() tgetnum()
tgetstr() andtgetflag()are gone. Initialization is instead done by calling

setupterritermtype, filedes, errret)
char *termtype;

int filedes;

int *errret;

This routine takes care of all reading in of capabilities, adotirer system dependent initializatiofhe
terminal type can be passed as 0, causatgpterm(jto usegeen(“TERM’’) as a dedult. errret is a
pointer to an intger used to return a statuslve. Thevalue returned is 0 if there is no such terminal type,

-6-

1 if all went well, or -1 for some troubleA null pointer can be passed for this value, telkegupterm(xo
print an error message and exit if the terminal cannot be found.

When «iting, or calling a shell escape, the user program shouldesatterm()to restore the tty
modes. Afterthe shell escapdixterm()can be called to set the tty modes back to their internal settings.
These calls are morequired, snce thg perform system dependent processifidiey do not output the
enter_ca_mode andexit_ca_mode strings {i andte in termcap) but should be called at the same times.
Setupterm(tallsfixterm()

tgoto() has been replaced hparm(), which is a more powerful parameterized string mechanism.
Thetgoto() routine is still @ailable for compatibility. tputs()is unchanged.

The external ariablesUP, BC, PC, and ospeed no longer &ist. Theprogrammer need notosry
about these, as their function ismbandled internally.

4. Changesfrom Termcap to Terminfo

This section describes the extensions in terminfo that were not present in termcap, and the incompati-
ble changes that were made.s intended for a programmer or termcap author who is familiar with term-
cap and wishes to become familiar with terminfo. The emphasis is on the database, not on the programmer
interface.

4.1. Syntax

The first thing you will notice upon scanning terminfo is that it looks cosmetically different from
termcap. Allthe backslashes are gone from ends of lines. Fields are separated with commas instead of
colons, and white space after the commasandkem more readable. Continuation lines are defined
as lines bginning with a blank or tab, not lines following a backslash. These changesamainfo easier
to read and to modify.

4.2. Names

The names of the capabilities are no longer limited tolétters. Therés no longer a hard limit to
the names, but an informal limit of 5 characters is ustidce the tw letter limit is gone, manof the
capabilities hee been renamedThey now correspond as closely as possible the the ANSI standard X3.64.
While learning the ne set of names will be trigkat first, eventually life will be simpley snce most ne
terminals use the ANSI abbreviations.

4.3. Defaults

A change that is perhaps not so obvious is that certaguliefare no longer implied. In termcap, \r
was assumed to be a carriage return unlesswas present, indicating that it did notork, or cr was
present, indicating an alternai In terminfo, if cr is present, the string soven works, otherwise it
should be assumetbt to work. Thebs andbc capabilities are replaced leyub andcubl. (The former
takes a parametemoving left that magp spaces. Thdatter is probably more common in terminals and
moves left one space.nl (linefeed) has been split into awfunctions:cud1 (moves the cursor down one
line) andind (scroll forward). cudl applies when the cursor is not on the bottom ling,applies when it
is on the bottom line. The bell capability ismexplicitly given as bel.

4.4. Compilation

The terminfo database is compiled, ualttrmcap. Thigneans that a terminfo source file (describ-
ing some set of terminals) is processed by the terminfo commitetucing a binary description of the-ter
minal in a file under /etc/term. The setupterm routine reads in this file.

The advantage to compilation is that starting up a program using termirfstes ft is no longer
necessary to carry around the variable TERMCAP in the@mment. Itis actually faster to start up a
compiled terminfowithoutthe environmentariable, than it is to start up an uncompiled termadp the
ervironment \ariable. Theincrease in speed comes partly from not having to skip past other terminal
descriptions, and partly from the compiler having sorted the capabilities into order so that a linear scan can
read them in.(The termcap initialization algorithm is quadratic on the size of the capability more

capabilities you are interested in, the worse this geétisad gotten to the point where it took 2 CPU sec-
onds on a VAX 11/750 to start up a process using an uncompiled terminfo!)

There exists an environmerdanable TERMINFO which is taken by the compiler to be the destina-
tion directory of the n& object files. It is also used kgetupterm(Xo find an entry for a gen terminal.
First it looks in the directory gén in TERMINFO and, if not found there, checks /etc/teriote, how-
eva, that, unlile the old TERMCAP variable, you may not put the source for an entry in the TERMINFO
variable. All terminfo entries must be compiled.

4.5. Parameterised Strings

The oldtgoto() mechanism, which was designed for cursor addressing l@adybeen replaced by a
more general parameter mechanism, accessed through the fupatimf). Snce the parameters are not
compatible in the terminfo database, a ternmaplescription must be converted manually to terminfo.

The nev mechanism is based on a sta®. operations are used to push parameters and constants
onto the stack, do arithmetic and other operations on the top of the stack, and print out vatessn v
formats. Thismales it possible to handle a larger class of terminals, such as the AED 512, which addresses
the cursor in terms of péts, not character positions, and the TEC scope, which numbers the rows and col-
umns from the lower right hand corner of the scregny number of parameters from 1 to 9 is possible,
whereastgoto() allowed only two parameters. If-then-elsisting is possible, as is storage in a limited
number of ariables. Therés no provision for loops or printing strings inyaiormat other than %sThe
full details are described in terminfo(5).

A few Lrief examples are included here to shcommon comersions. Br more examples, compare
the termcamgm and terminfocup entries for yourdvarite terminal. “ %+ " (add space and print as a char
acter) would be treated as “%pl%’ '%+%dahat is, push the first parametpush space, add the topdw
numbers on the stack, and output the top item on the stack using character (%c) format. (Of course, for the
second parametethe %pl must be changed to %p2%.” (print as a character)ould be “Y%pl1%.c”.
“%d" (print in decimal) would be%p1%d". As with tgoto(), characters standing by themselves (no %
sign) are output as is.

4.6. More Capabilities

There are a number of wecapabilities. Theset of nev capabilities may a&ry, depending on theer-
sion of termcap you are used to. It is probably worthwhile to read terminfo(5) for a complete list. This sec-
tion describes capabilitiesweo terminfo that were ner put in termcap.

There are pnasions for dealing with more video attutes. EBrmcap had strings to turn on and of
standout and underline mode$erminfo has these and\aal more. There are strings to turn on bold,
inverse video, blinking, dim, protected, and blankirRather than ha sparate string for turning fofach
of these, a single capabilitsgr0, turns them all off.

The effect of turning on more than one attribute at a time with the separate strings is undefined.
parameterized stringgr, can be used to turn them on in combination.

More function leys ae defined n@. There are pnasions for fO through f10 as well agys auch as
erase, insert mode, insert line, delete line, delete charaater and so on. All of theseelys can be
accessed through curses as ifythere single charactersAlso, vi version 3.8 has dafilt meanings for
mary of them.

Several nev uses are made of parameterized strirfgs. example, capabilities exist to me the cur
sor to a particular column in the currentvr@ articular rav in the current column, and to m®left, right,
up, or down a gien number of spaces. These capabilities enalig difference on some terminals, such as
the Tektronix 4025. Also, column addressing is useful for filters that do net What rav they are in, or
as a shorter form of cursor addressing when the target is in the same ro

There are ne capabilities to turn on andfod local printeyand to print the current page. Also, there
are provisions for moving the cursor to and from a status line. These capabilities can be used by a back-
ground status program, suchsysling to keep status information in the status line without bothering fore-
ground processeslhis only works on terminals with a writable status line, such as the h19 or tvi950, or on

-8-

terminals where one can be simulated, such as the hp2626, vt100, or ambagsdidcating one of the
ordinary screen lines for a status line.

4.7. How to Convert from Termcap to Terminfo

This section is intended for programmers who need taetbprograms that use termcap to thevne
terminfo database. It describes the steps needed for thersion.

If you must mak the cowersion, you are strongly urged to eert to curses, rather than aanting
to terminfo. The curses interface is highereleand will probably do a better job of optimizing your out-
put. Your program will vork on a wider range of terminals if you use curses. It will also become more
portable. Theffort to cowert to curses is probably about the same as teerbto terminfo.

There are some programs for which curses is not a possil@litses takeswer the CR screen, and
this implies initially clearing the screerzor some programs, such as filters, this may not enggase.
Also, if you are writing a special purpose program which uses some terminfo capability that curses does not
use, it will probably be necessary to use the terminfg iaterface.

4.8. Conversion

The first step is to include the headers <curses.h> and <term.h> (in that order). These headers will
bring into existence a set ¢¥ariables’ (actually macros) that contaimiaes of capabilitiesFor example,
the macrocursor_address will be defined, replacing the termcam capability You should remee the
declarations for all variables you use for capabilities returndgddiflag() tgetnum() and tgetstr()

The most difficult step is that all variables rereabin the preious step must be renamed the standard
names. Br example, if you storedm in the variable CM, you would changputgtgota(CM, i, j), 1,
outch) totputqtgotalcursor_address, i, j), 1, outch). Consult terminfo(5) for a list of standard namés.
sed script is often useful for this step. Care must be takervam anention of the ariable as part of a
longer word (a version ad supporting thex <word> cowention is useful here.) Also, you should proof-
read the results, since sometimes comments and strings get substituted thatt$tamaldeén.

Remore dl your termcap initialization code. This code typically catistent() tgetstr() tgetflag()
andtgetnum() You can also renve ceclarations used only for this initialization, usually includingfdrs
for the entry and stringalues. Replacé& with a single call tosetuptern@0, 1, 0). This call will never
return if something goes wrong, that is, if there is no $TERM in thieoziment or there is no such termi-
nal, the routine will print an error andie If you need an error indication passed back for more sophisti-
cated error rea@ry, pass an integer variable in the third parameter setupterm(01, &i). The \alue
returned ini will be the same as that previously returnedtdmtent() Other more sophisticated calls to
setupterm(re possible, see the documentation if some terminal other than $TERM or some file descriptor
other tharstdout are irvolved.

Before the program exits, insert a callrésetterm() This will restore the tty modes to their state
before setupterm was called, and dyg ather system dependentieprocessing. This routine can also be
called before a shell escape, you shouldfoadrm()after the shell escape to restore the tty modes to those
needed by terminfo(Currentlysetupterm(will turn off the XTABS bit in the tty drier, Snce some termi-
nals need to send control | for escape sequensshould be sure to expandyatabs in your software if
necessary.)

From the programmers viewpoint, the routipats()is exactly as in termcap. The padding syntax in
the capability is different, but this only affects the capabilities in the terminfo dataNasehange to a
program will be needed faputs()

Thetgoto() routine is lept around for upward compatibiljitjut you should probably replace calls to
tgoto() by calls totparm(). The calltgotocap, y x) will call tparm(cap, X, y). Note that the order of the
last two arguments is reersed - it was backwards tgoto() from what it probably should ke keen. In
addition to the capabilitgparm()can nev take up to fine parameters, or asifeas ae.

If you use certain capabilities, there arewa tervention changes you should beae of. These do
not affect very may programs, but will require some minor recoding of @ f’ograms. Intermcap, the
cursor is meed left by control-H ifbs is present, otherwise, Bc is present, that character is usdd.

-O-

terminfo, the cursor is nved left with cubl, if present, or byub, if present. Ifneither is there, there is no
implied control-H. Similarly, termcap assumed that control-M was carriage return unkess cr was
specified. Interminfo, carriage return isvadys the string specified byr, and if not present, there is no
carriage return capabilityin termcap, linefeed is assumed to bothventhe cursor down (if it is not on the
bottom line) and to scroll one line (if it is on the bottom line), unhssis present.sf anddo capabilities
were present but little used, and some software assumesf thatked with the cursor anywhere on the
screen. Interminfo, there is no implied linefeed - wming the cursor down is done witud1 or cud and
scrolling is done withind. ind is only defined when the cursor is at the bottom of the scr€igally, the
implied control G used to ring the bell unledswas present has been replaced with an exptieit

Replace references in your makefile from -ltermcap or -Itermlib with references to -lcurses.
Now recompile your program. It should run properly using terminfo.

4.9. Space Conditions

The expansion of a macro name into a structure reference will probabdymakprogram a bit big-
ger. If space is a problem, one thing you can do is-&fel NGLE to the CFLAGS in your ma#ile. This
causes the macros tapand to a static reference instead of a dynamic reference, resulting in smaller code.
It cannot be used if you intend tovelve nore than one terminal from a single process. Since veary fe
programs talk to tevterminals at once, it is almostalys safe to define SINGLE.

If your program vas pushing the limit on a small machine, it may not fit with terminfo unless you
trim it down some. While the startup routines aastér they tend to generate larger code than those of
termcap. Alsotputs()andtparm()are more sophisticated and larger.

