
New Features in Curses and Terminfo

Pavel Curtis

1. Introduction

This document describes new features that are being added to the Berkeley curses subroutine pack-
age. Italso describes the new terminfo database, which replaces the Berkeley termcap database. The
emphasis is on the new features.

2. New Features in Curses

This section describes the enhancements to curses. Briefly, the enhancements are:

a. Cursesis smarter. It can take advantage of insert/delete line/character. (By default, it will not use
insert/delete line. Seeidlok().)

b. Curses uses the newterminfo data base, as described in the next section.

c. Cursesworks on more terminals.

d. It is possible to use more than one terminal at a time.

e. Video attributes can be displayed in any combination.

f. Curseshandles terminals with the ‘‘magic cookie’’ v ideo attribute glitch.

g. Thefunction and arrow keys on terminals can be input as though they were a single character.

h. Thereis a user accessible scrolling region, like the DEC VT100.

i. If the programmer restricts his code to a subset of the full curses, theMINICURSES version can be
used, which is smaller and faster.

j. Two routines are provided for setting the tty bits to the proper state for shell escapes and control-Z
suspensions.

k. Onsystems that support it (currently only 4.1BSD), if the user types something during an update, the
update will stop, pending a future update. This is useful when the user hits several keys, each of
which causes a good deal of output.

l. Theroutinegetstr() is smarter - it handles the users erase and kill characters, and echos its input.

m. Thefunctionlongname() is now useful and actually works.

n. Nodelaymode allows ‘‘real time’’ programs to be written with the same interface on both systems.
Setting the flag causesgetch to return -1 if no input is waiting.

o. Several useful routines are provided to enhance portability.

2.1. Curses is Smarter

The algorithm used by curses has been replaced with an algorithm that takes into account insert and
delete line and character functions, if available, in the terminal. By default, curses will not use insert/delete
line. Thiswas not done for performance reasons, since there is no speed penalty involved. Rather, it was
found that some programs do not need this facility, and that if curses uses insert/delete line, the result on the
screen can be visually annoying. Sincemost simple programs using curses do not need this, and since the
old curses did not use it, the default is to avoid insert/delete line. Call the routine

idlok(stdscr, TRUE);

to enable insert/delete line, if your application needs it. Insert/delete character is always considered.

-2-

2.2. Additional Terminals

Curses works on a larger class of terminals than the previous version. Terminfo is able to address the
cursor on more kinds of terminals. Curses will work even if absolute cursor addressing is not possible, as
long as the cursor can be moved from any location to any other location. It considers local motions, param-
eterized motions, home, and carriage return.

Curses is still aimed at full duplex, alphanumeric, video terminals.No attempt is made to handle
half-duplex, synchronous, hard copy, or bitmapped terminals.

Curses handles terminals with the ‘‘magic cookie glitch’’ i n their video attributes.* This glitch means
that a change in video attributes is implemented by storing a ‘‘magic cookie’’ in a location on the screen.
This ‘‘cookie’’ takes up a space, preventing an exact implementation of what the programmer wanted.
Curses takes the extra space into account, and moves part of the line to the right, as necessary. In some
cases, this will unavoidably result in losing text from the right hand edge of the screen.Existing spaces are
taken advantage of.

2.3. Multiple Terminals

Some applications need to display text on more than one terminal, controlled by the same process.
Even if the terminals are different, the new curses can handle this.

All information about the current terminal is kept in a global variable

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler will accept declarations of variables
which are pointers. The user program should declare one screen pointer variable for each terminal it wishes
to handle. The routine

struct screen *
newterm(type, fd)
char *type;
FILE *fp;

will set up a new terminal of the given terminal type which does output on file pointer fp.A call to initscr()
is essentiallynewterm(getenv(‘‘TERM’’), stdout). A program wishing to use more than one terminal
should usenewterm()for each terminal and save the value returned as a reference to that terminal.

To switch to a different terminal, call

struct screen *
set_term(term)
struct screen *term;

The old value of SP will be returned.You should not assign directly to SP because certain other global
variables must also be changed.

All curses routines always affect the current terminal.To handle several terminals, switch to each
one in turn withset_term(), and then access it. Each terminal must be set up withnewterm(), and closed
down withendwin().

2.4. Video Attributes

Video attributes can be displayed in any combination on terminals with this capability. They are
treated as an extension of the standout capability, which is still present.

Each character position on the screen has 16 bits of information associated with it.7 of these bits are
the character to be displayed, leaving separate bits for 9 video attributes. Thesebits are used for standout,
underline, reverse video, blink, dim, bold, blank, protect, and alternate character set. Standout is taken to
be whatever highlighting works best on the terminal, and should be used by any program that does not need
specific or combined attributes. Underlining,reverse video, blink, dim, and bold are the usual video

*This feature is not supported in the current test release. It will be implemented in the official distribution.

-3-

attributes. Blankmeans that the character is displayed as a space, for security reasons.Protected and alter-
nate character set are dependent on the particular terminal.The use of these last three bits is subject to
change and not recommended.

The routines to use these attributes include

attrset(attrs) wattrset(attrs)
attron(attrs) wattron(attrs)
attroff(attrs) wattroff(attrs)
standout() wstandout()
standend() wstandend()

Attributes, if given, can be any combination of A_STANDOUT, A_UNDERLINE, A_REVERSE,
A_BLINK, A_DIM, A_BOLD, A_INVIS, A_PROTECT, and A_ALTCHARSET. These constants, defined
in curses.h, can be combined with the C | (or) operator to get multiple attributes. Attrset()sets the current
attributes to the given attr; attron() turns on the given attrs in addition to any attributes that are already on;
attroff() turns off the given attributes, without affecting any others. standout()andstandend()are equiv-
alent toattron(A_STANDOUT) andattroff(A_STANDOUT).

Since standout is stored in the 8th bit of the text byte, it is possible to recompile curses so that only 8
bits are stored for each character, making a smaller curses, and still be able to use standout. Also, programs
that restrict themselves to the routinesstandout()and standend()will work with both the new and old
curses.

If the particular terminal does not have the particular attribute or combination requested, curses will
attempt to use some other attribute in its place. If the terminal has no highlighting at all, all attributes will
be ignored.

2.5. Function Keys

Many terminals have special keys, such as arrow keys, keys to erase the screen, insert or delete text,
and keys intended for user functions. The particular sequences these terminals send differs from terminal to
terminal. Cursesallows the programmer to handle these keys.

A program using function keys should turn on the keypad by calling

keypad(stdscr, TRUE)

at initialization. This will cause special characters to be passed through to the program by the function
getch(). These keys hav econstants which are defined in curses.h.They hav evalues starting at 0401, so
they should not be stored in achar variable, as significant bits will be lost.

A program using function keys should avoid using theESCAPEkey, since most sequences start with
escape, creating an ambiguity. Curses will set a one second alarm to deal with this ambiguity, which will
cause delayed response to the escape key. It is a good idea to avoid escape in any case, since there is even-
tually pressure for nearlyanyscreen oriented program to accept arrow key input.

2.6. Scrolling Region

There is a user accessible scrolling region, like the DEC VT100.Normally, it is set to the entire win-
dow, but the calls

setscrreg(top, bot)
wsetscrreg(win, top, bot)

set the scrolling region forstdscr or the given window to any combination of top and bottom margins. If
scrolling has been enabled withscrollok, scrolling will take place only within that window. See theCurses
Reference Manualfor the detailed semantics of this construct.

2.7. Mini-Curses*

*This feature is not supported in the current test release. It will be implemented in the official distribution.

-4-

The new curses is bigger than the old one, and has to copy from the current window to an internal
screen image for every call to refresh(). If the programmer is only interested in screen output optimization,
and does not want the windowing or input functions, an interface to the lower level routines is available.
This will make the program somewhat smaller and faster. The interface is a subset of full curses, so that
conversion between the levels is not necessary to switch from mini-curses to full curses.

The subset mainly requires you to avoid use of more than the one window stdscr. Thus, all functions
beginning with ‘‘w’ ’ are generally undefined.Certain high level functions that are convenient but not
essential are also not available, includingprintw() andscanw() Also, the input routinegetch() cannot be
used with mini-curses. Features implemented at a low lev el, such as use of hardware insert/delete line and
video attributes, are available in both versions. Also,mode setting routines such ascbreak()andnoecho()
are allowed. Seethe manual page for the exact list of routines allowed with mini-curses.

To access mini-curses, add-DMINICURSES to the CFLAGS in your makefile. If you ask for rou-
tines that are not in the subset, the loader will print error messages such as

Undefined:
no_getch
no_waddch

to tell you that the routinesgetch() andwaddch()were used but are not available in the subset. Since the
preprocessor is involved in the implementation of mini-curses, you must recompile the entire program if
you change from one version to the other. Similarly, programs compiled with the old curses must be
recompiled for the new curses.

2.8. TTY Mode Functions

In addition to the save/restore routinessavetty()and resetty(), standard routines are available for
going into and out of normal tty mode. These routines areresetterm(), which puts the terminal back in the
mode it was in when curses was started, andfixterm(), which undoes the effects ofresetterm(), that is,
restores the ‘‘current curses mode’’. endwin()automatically callsresetterm(), and the routine to handle
control-Z (on 4.1BSD systems with process control) also usesresetterm()andfixterm(). The programmer
should use these routines before and after shell escapes, and also if he writes his own routine to handle con-
trol-Z. Theseroutines are also available at theterminfolevel.

2.9. Typeahead Check*

On systems that support it (current only 4.1BSD), if the user types something during an update, the
update will stop, pending a future update. This is useful when the user rapidly hits several keys, each of
which causes a good deal of output. This feature is automatic and cannot be disabled.

2.10. Getstr()

The routinegetstr() is smarter. The semantics are slightly different from the oldgetstr(), but no
incompatibilities are anticipated. No matter what the setting ofechois, strings typed in here are echoed at
the current cursor location. The users erase and kill characters are understood and handled. This makes it
unnecessary for an interactive program to deal with erase, kill, and echoing when the user is typing a line of
text.

2.11. Longname()

The functionlongname()is now useful and actually works. Theprevious version required the pro-
grammer to calltgetent()directly and pass the resulting string, along with a buffer, to longname(). The
string actually returned was the second alias for the terminal, not the long name.

The new longname()function does not take any arguments. Itreturns a pointer to a static area con-
taining the actual long name of the terminal. No call totgetent()is needed, in fact, that routine no longer
exists.

*This feature is not supported in the current test release. It will be implemented in the official distribution.

-5-

2.12. Nodelay Mode

The call

nodelay(stdscr, TRUE)

will put the terminal in ‘‘nodelay mode’’. While in this mode, any call to getch() will return -1 if there is
nothing waiting to be read immediately. This is useful for writing programs requiring ‘‘real time’’ behavior
where the user watches action on the screen and presses a key when he wants something to happen.For
example, the cursor can be moving across the screen, and the user can press an arrow key to change direc-
tion. Thismode is especially useful for games such as PacMan and Space Invaders.

2.13. Portability

Several useful routines are provided to enhance portability. While these routines do not directly
relate to terminal handling, their implementation is different from system to system, and the differences can
be isolated from the user program by including them in curses.

Functionserasechar()and killchar() return the characters which erase one character, and kill the
entire input line, respectively. The functionbaudrate()will return the current baud rate, as an integer. (For
example, at 9600 baud, the integer 9600 will be returned, not the value B9600 from <sgtty.h>.) The routine
flushinp()will cause all typeahead to be thrown away.

2.14. Features No Longer Supported

In general, an effort has been made to support old features where possible.However, there are some
features of the old curses that cannot be supported, due to the change to terminfo, or due to other miscela-
neous causes.

The old curses defined a number of two letter variables, such as CM, containing termcap capabilities.
These variables are no longer accessible to the user. In general, their semantics are different, as are their
names. Aprogram using primarily these variables is really written at the termcap level. Also unavailable
are the related variables NONL, GT, and UPPERCASE.

Such programs should be recoded to avoid these capabilities, if at all possible, instead using the
higher level curses functions. If this is not possible, recode at the terminfo level. A program making only
light use can probably be easily changed to avoid these variables completely. A program at the terminfo
level that only needs motion optimization should probably still be recoded to use the high level routines, in
order to work on more terminals. If this is not possible, recode at the terminfo level, continuing to use
mvcur(), which is still supported. It is not necessary to callmvcur()to move to the lower left corner of the
screen before callingendwin().

Some programs (notably rogue) use varibles in <curses.h> which begin with an underline. Use of
these variables and fields is to be avoided. Mostof the internal structures used by curses are hidden from
the user. The variables _tty and _tty_ch are no longer accessible. (Since _tty was a version 7 dependent
structure, it was not portable to use it anyway.) Useful fields, such as the erase and kill characters, and the
baud rate, can be discovered using the portable functions described above.

3. Termlib-Level Changes

The termcap(3) (termlib) library has been consolidated with the curses(3) library to form a new
curses(3) library. The termlib level is very different in the new version. Theroutinestgetent(), tgetnum(),
tgetstr(), and tgetflag()are gone. Initialization is instead done by calling

setupterm(termtype, filedes, errret)
char *termtype;
int filedes;
int *errret;

This routine takes care of all reading in of capabilities, and any other system dependent initialization.The
terminal type can be passed as 0, causingsetupterm()to usegetenv(‘‘TERM’ ’) as a default. errret is a
pointer to an integer used to return a status value. Thevalue returned is 0 if there is no such terminal type,

-6-

1 if all went well, or -1 for some trouble.A null pointer can be passed for this value, tellingsetupterm()to
print an error message and exit if the terminal cannot be found.

When exiting, or calling a shell escape, the user program should callresetterm()to restore the tty
modes. Afterthe shell escape,fixterm()can be called to set the tty modes back to their internal settings.
These calls are now required, since they perform system dependent processing.They do not output the
enter_ca_mode andexit_ca_mode strings (ti and te in termcap) but should be called at the same times.
Setupterm()callsfixterm().

tgoto() has been replaced bytparm(), which is a more powerful parameterized string mechanism.
Thetgoto()routine is still available for compatibility. tputs()is unchanged.

The external variablesUP, BC, PC, and ospeed no longer exist. Theprogrammer need not worry
about these, as their function is now handled internally.

4. Changes from Termcap to Terminfo

This section describes the extensions in terminfo that were not present in termcap, and the incompati-
ble changes that were made.It is intended for a programmer or termcap author who is familiar with term-
cap and wishes to become familiar with terminfo. The emphasis is on the database, not on the programmer
interface.

4.1. Syntax

The first thing you will notice upon scanning terminfo is that it looks cosmetically different from
termcap. All the backslashes are gone from ends of lines. Fields are separated with commas instead of
colons, and white space after the commas makes them more readable. Continuation lines are now defined
as lines beginning with a blank or tab, not lines following a backslash. These changes make terminfo easier
to read and to modify.

4.2. Names

The names of the capabilities are no longer limited to two letters. Thereis no longer a hard limit to
the names, but an informal limit of 5 characters is used.Since the two letter limit is gone, many of the
capabilities have been renamed.They now correspond as closely as possible the the ANSI standard X3.64.
While learning the new set of names will be tricky at first, eventually life will be simpler, since most new
terminals use the ANSI abbreviations.

4.3. Defaults

A change that is perhaps not so obvious is that certain defaults are no longer implied. In termcap, \r
was assumed to be a carriage return unlessnc was present, indicating that it did not work, or cr was
present, indicating an alternative. In terminfo, if cr is present, the string so given works, otherwise it
should be assumednot to work. Thebs andbc capabilities are replaced bycub andcub1. (The former
takes a parameter, moving left that many spaces. Thelatter is probably more common in terminals and
moves left one space.)nl (linefeed) has been split into two functions:cud1 (moves the cursor down one
line) andind (scroll forward). cud1 applies when the cursor is not on the bottom line,ind applies when it
is on the bottom line. The bell capability is now explicitly given as bel.

4.4. Compilation

The terminfo database is compiled, unlike termcap. Thismeans that a terminfo source file (describ-
ing some set of terminals) is processed by the terminfo compiler, producing a binary description of the ter-
minal in a file under /etc/term. The setupterm routine reads in this file.

The advantage to compilation is that starting up a program using terminfo is faster. It is no longer
necessary to carry around the variable TERMCAP in the environment. It is actually faster to start up a
compiled terminfowithout the environment variable, than it is to start up an uncompiled termcapwith the
environment variable. Theincrease in speed comes partly from not having to skip past other terminal
descriptions, and partly from the compiler having sorted the capabilities into order so that a linear scan can
read them in.(The termcap initialization algorithm is quadratic on the size of the capability. The more

-7-

capabilities you are interested in, the worse this gets.It had gotten to the point where it took 2 CPU sec-
onds on a VAX 11/750 to start up a process using an uncompiled terminfo!)

There exists an environment variable TERMINFO which is taken by the compiler to be the destina-
tion directory of the new object files. It is also used bysetupterm()to find an entry for a given terminal.
First it looks in the directory given in TERMINFO and, if not found there, checks /etc/term.Note, how-
ev er, that, unlike the old TERMCAP variable, you may not put the source for an entry in the TERMINFO
variable. All terminfo entries must be compiled.

4.5. Parameterised Strings

The oldtgoto() mechanism, which was designed for cursor addressing only, has been replaced by a
more general parameter mechanism, accessed through the functiontparm(). Since the parameters are not
compatible in the terminfo database, a termcapcm description must be converted manually to terminfo.

The new mechanism is based on a stack.% operations are used to push parameters and constants
onto the stack, do arithmetic and other operations on the top of the stack, and print out values in various
formats. Thismakes it possible to handle a larger class of terminals, such as the AED 512, which addresses
the cursor in terms of pixels, not character positions, and the TEC scope, which numbers the rows and col-
umns from the lower right hand corner of the screen.Any number of parameters from 1 to 9 is possible,
whereastgoto() allowed only two parameters. If-then-elsetesting is possible, as is storage in a limited
number of variables. Thereis no provision for loops or printing strings in any format other than %s.The
full details are described in terminfo(5).

A few brief examples are included here to show common conversions. For more examples, compare
the termcapcm and terminfocup entries for your favorite terminal. ‘‘ %+ ’’ (add space and print as a char-
acter) would be treated as ‘‘%p1%’ ’%+%c’’, that is, push the first parameter, push space, add the top two
numbers on the stack, and output the top item on the stack using character (%c) format. (Of course, for the
second parameter, the %p1 must be changed to %p2.) ‘‘%.’’ (print as a character) would be ‘‘%p1%c’’.
‘‘ %d’’ (print in decimal) would be ‘‘%p1%d’’. As with tgoto(), characters standing by themselves (no %
sign) are output as is.

4.6. More Capabilities

There are a number of new capabilities. Theset of new capabilities may vary, depending on the ver-
sion of termcap you are used to. It is probably worthwhile to read terminfo(5) for a complete list. This sec-
tion describes capabilities new to terminfo that were never put in termcap.

There are provisions for dealing with more video attributes. Termcap had strings to turn on and off
standout and underline modes.Terminfo has these and several more. There are strings to turn on bold,
inverse video, blinking, dim, protected, and blanking.Rather than have separate string for turning off each
of these, a single capability:sgr0, turns them all off.

The effect of turning on more than one attribute at a time with the separate strings is undefined.A
parameterized string,sgr, can be used to turn them on in combination.

More function keys are defined now. There are provisions for f0 through f10 as well as keys such as
erase, insert mode, insert line, delete line, delete character, print, and so on. All of these keys can be
accessed through curses as if they were single characters.Also, vi version 3.8 has default meanings for
many of them.

Several new uses are made of parameterized strings.For example, capabilities exist to move the cur-
sor to a particular column in the current row, a particular row in the current column, and to move left, right,
up, or down a given number of spaces. These capabilities make a big difference on some terminals, such as
the Tektronix 4025. Also, column addressing is useful for filters that do not know what row they are in, or
as a shorter form of cursor addressing when the target is in the same row.

There are now capabilities to turn on and off a local printer, and to print the current page. Also, there
are provisions for moving the cursor to and from a status line. These capabilities can be used by a back-
ground status program, such assysline, to keep status information in the status line without bothering fore-
ground processes.This only works on terminals with a writable status line, such as the h19 or tvi950, or on

-8-

terminals where one can be simulated, such as the hp2626, vt100, or ambassador, by allocating one of the
ordinary screen lines for a status line.

4.7. How to Convert from Termcap to Terminfo

This section is intended for programmers who need to convert programs that use termcap to the new
terminfo database. It describes the steps needed for the conversion.

If you must make the conversion, you are strongly urged to convert to curses, rather than converting
to terminfo. The curses interface is higher level and will probably do a better job of optimizing your out-
put. Your program will work on a wider range of terminals if you use curses. It will also become more
portable. Theeffort to convert to curses is probably about the same as to convert to terminfo.

There are some programs for which curses is not a possibility. Curses takes over the CRT screen, and
this implies initially clearing the screen.For some programs, such as filters, this may not make sense.
Also, if you are writing a special purpose program which uses some terminfo capability that curses does not
use, it will probably be necessary to use the terminfo level interface.

4.8. Conversion

The first step is to include the headers <curses.h> and <term.h> (in that order). These headers will
bring into existence a set of ‘‘variables’’ (actually macros) that contain values of capabilities.For example,
the macrocursor_address will be defined, replacing the termcapcm capability. You should remove the
declarations for all variables you use for capabilities returned bytgetflag(), tgetnum(), and tgetstr().

The most difficult step is that all variables removed in the previous step must be renamed the standard
names. For example, if you storedcm in the variable CM, you would changetputs(tgoto(CM, i, j), 1,
outch) totputs(tgoto(cursor_address, i, j), 1, outch). Consult terminfo(5) for a list of standard names.A
sed script is often useful for this step. Care must be taken to avoid mention of the variable as part of a
longer word (a version ofsed supporting theex <word> convention is useful here.) Also, you should proof-
read the results, since sometimes comments and strings get substituted that shouldn’t hav ebeen.

Remove all your termcap initialization code. This code typically callstgetent(), tgetstr(), tgetflag(),
andtgetnum(). You can also remove declarations used only for this initialization, usually including buffers
for the entry and string values. Replaceit with a single call tosetupterm(0, 1, 0). This call will never
return if something goes wrong, that is, if there is no $TERM in the environment or there is no such termi-
nal, the routine will print an error and exit. If you need an error indication passed back for more sophisti-
cated error recovery, pass an integer variable in the third parameter, i.e. setupterm(0,1, &i). The value
returned ini will be the same as that previously returned bytgetent(). Other more sophisticated calls to
setupterm()are possible, see the documentation if some terminal other than $TERM or some file descriptor
other thanstdout are involved.

Before the program exits, insert a call toresetterm(). This will restore the tty modes to their state
before setupterm was called, and do any other system dependent exit processing. This routine can also be
called before a shell escape, you should callfixterm()after the shell escape to restore the tty modes to those
needed by terminfo.(Currentlysetupterm()will turn off the XTABS bit in the tty driver, since some termi-
nals need to send control I for escape sequences.You should be sure to expand any tabs in your software if
necessary.)

From the programmers viewpoint, the routinetputs()is exactly as in termcap. The padding syntax in
the capability is different, but this only affects the capabilities in the terminfo database.No change to a
program will be needed fortputs().

The tgoto() routine is kept around for upward compatibility, but you should probably replace calls to
tgoto() by calls totparm(). The calltgoto(cap, y, x) will call tparm(cap, x, y). Note that the order of the
last two arguments is reversed - it was backwards intgoto() from what it probably should have been. In
addition to the capability,tparm()can now take up to nine parameters, or as few as one.

If you use certain capabilities, there are a few convention changes you should be aware of. These do
not affect very many programs, but will require some minor recoding of a few programs. Intermcap, the
cursor is moved left by control-H ifbs is present, otherwise, ifbc is present, that character is used.In

-9-

terminfo, the cursor is moved left with cub1, if present, or bycub, if present. Ifneither is there, there is no
implied control-H. Similarly, termcap assumed that control-M was carriage return unlessnc or cr was
specified. Interminfo, carriage return is always the string specified bycr, and if not present, there is no
carriage return capability. In termcap, linefeed is assumed to both move the cursor down (if it is not on the
bottom line) and to scroll one line (if it is on the bottom line), unlessns is present.sf anddo capabilities
were present but little used, and some software assumed thatsf worked with the cursor anywhere on the
screen. Interminfo, there is no implied linefeed - moving the cursor down is done withcud1 or cud and
scrolling is done withind. ind is only defined when the cursor is at the bottom of the screen.Finally, the
implied control G used to ring the bell unlessvb was present has been replaced with an explicitbel.

Replace references in your makefile from -ltermcap or -ltermlib with references to -lcurses.

Now recompile your program. It should run properly using terminfo.

4.9. Space Conditions

The expansion of a macro name into a structure reference will probably make your program a bit big-
ger. If space is a problem, one thing you can do is add-DSINGLE to the CFLAGS in your makefile. This
causes the macros to expand to a static reference instead of a dynamic reference, resulting in smaller code.
It cannot be used if you intend to involve more than one terminal from a single process. Since very few
programs talk to two terminals at once, it is almost always safe to define SINGLE.

If your program was pushing the limit on a small machine, it may not fit with terminfo unless you
trim it down some. While the startup routines are faster, they tend to generate larger code than those of
termcap. Also,tputs()andtparm()are more sophisticated and larger.

