Computer Architecture Technical Report

TUCZ / RA-TR-96-05

Message Passing Efficiency on Shared Memory Architectures

Thomas Radke

—
—

RECHNERARCHITEKTUR

University of Technology Chemnitz—Zwickau
Department of Computer Science
Computer Architecture

Prof. Dr. W.Rehm

1 Introduction

Especially in the framework of the newly founded ”Sonderforschungsbereich SFB 393 : Numerische
Simulation auf massiv parallelen Rechnern”, other parallel architectures — namely shared memory
systems — are to be investigated for their ability to efficiently solve the addressed problems. Two
principle ways are possible to implement parallel programs on shared memory architectures. First,
one can use multithreading as the basic programming model for his/her implementation[1]. This
guarantees the best use of the facilities of the underlying hardware. The other way is to use a message
passing interface, that resides on top of multithreading, and write a CSP program.

The first way was evaluated at our department by porting a module of an existing message passing
program (FEM solver) onto a shared memory system[2]. Tests showed that good efficiency results can
be obtained for small problem sizes mapped onto few processors. But the port took a considerable
amount of time, and writing a multithreaded program appeared to be even harder than defining the
same problem with the message passing paradigm.

As there are comprehensive experiences at the University of Technology Chemnitz with message
passing programming on the Parsytec massively parallel computer series, we concluded that the second
approach should be favourized in the SFB 393.

This paper describes the potential facilities for message passing on 2 shared memory systems available
at the Department of Computer Science: the KSR1 from Kendall Sqare Research, and Compaq’s
ProLiant 4000. The theoretical efficiencies of a message passing interface are given as communi-
cation bandwidth, communication latency, parallelity of communication and computation, and the
implementation of global operations. Efficieny losses due to the implementation of the underlying
multithreading functionality are not studied here in detail, the main intention was to evaluate the
shared memory hardware architecture.

RA-TR-96-05, © TUCZ. 1

2 The KSR1 Architecture

The KSR1 parallel shared memory computer (built by Kendall Square Research) consists of 8 proces-
sor nodes. Fach node has a KSR1 processor (20 MHz clock, RISC architecture, developed at Kendall
Square Research) with a first-level cache of 0.5 MBytes, half for instructions, half for data. The node’s
main memory is 32 MBytes of size. It is called the local cache, but the local processor has access to
local caches of other nodes too. This is realized by the KSR ALLCACHE architecture: all nodes are
chained in a ring (called ALLCACHE engine). Any access to remote caches is done over this ring,
with a physical bandwidth of 1 GByte/s. The coherency of global memory is ensured by a local cache
directory in every node.

Node O

Node 1

Processor KSR1
20 MHz

Processor KSR1
20 MHz

First-Level Cache
250 kB Instruction
250 kB Data

First-Level Cache
250 kB Instruction
250 kB Data

Local Cache
32MB

Local Cache
32MB

Local Cache
Directory

Local Cache
Directory

ALLCACHE Engine: 0

Node 7

Processor KSR1
20 MHz

First-Level Cache
250 kB Instruction
250 kB Data

Local Cache
32MB

Local Cache
Directory

1 GB/s

Figure 1: Architecture of the KSR1 computer [3]

Because there is no explicite global main memory, the KSR1 computer is classified as COMA archi-
tecture (cache only memory access).

2 RA-TR-96-05, © TUCZ.

3 The Compaq ProLiant 4000 Architecture

The ProLiant 4000 is a symmetric multiprocessor PC system, built by Compaq. It has 4 processors
(Intel Pentium 66 MHz, 8 KBytes on-chip cache for instructions and data respecticely). FEach pro-
cessor module is supplied with its own second-level cache (256 KBytes). Access to main memory is
realized by the Compaq TriFlex bus, with a peak bandwidth of 267 MBytes/s.

Node O Node 1 Node 2 Node 3
Intel Pentium Intel Pentium Intel Pentium Intel Pentium
66 MHz 66 MHz 66 MHz 66 MHz
First-Level Cache First-Level Cache First-Level Cache First-Level Cache
8 kB Instruction 8 kB Instruction 8 kB Instruction 8 kB Instruction
8 kB Data 8 kB Data 8 kB Data 8 kB Data
Second-Level Cache Second-Level Cache Second-Level Cache Second-Level Cache
256 kB 256 kB 256 kB 256 kB
Compaqg TriFlex Bus \LJ/ 267 MB/s

Main Memory
9% MB

Figure 2: Architecture of the Compaq ProLiant 4000

The Compaq ProLiant 4000 has a UMA architecture (uniform memory access). All processors have
the same access time to main memory.

RA-TR-96-05, @ TUCZ. 3

4 The Multithreading Programming Model

Multithreading extends the process concept of classical UNIX operating systems by the opportunity,
that a process itself can spawn several threads of control at runtime. The threads have an own
stack and register set, so that they can run in parallel. The process address space is shared between
all threads. Global variables can be used for inter-thread-communication. Synchronization facilities
(mutexes, semaphores, condition variables, barriers) are used to implement controlled access to shared
variables and to synchronize threads at specific program points.

Multithreaded Process

Thread k

*

ack
* register set

Thread |

*

ack
* register set

global shared data

Figure 3: Threads in a multithreaded process

5 Message Passing on Top of Multithreading
The emulation of message passing in a multithreaded environment can be expressed as following:

e Threads become the nodes of the message passing program.

e Communication is done via synchronization of threads and simply copying of the data from the
sending node to the receiver.

5.1 Threads as Nodes

In distinction to message passing programming under PARIX, where the whole main program is
duplicated onto all processor nodes at load time, threads begin their execution in a start function
from within the same process. This could be done implicitely by calling a function

int MP_Init (unsigned int num_nodes, void (*start_fn) (void *arg));

with stari_fn specifying the function to start execution of the thread with the single argument arg,
and num_nodes determining the number of nodes to create.

Another distinction is the declaration of global variables. In a PARIX program, all global variables
are visible to the local node only. In multithreaded programs these variables are shared between all
nodes. A possible way to solve this problem is the introduction of private data. Each variable with
an attribute private becomes thread-specific, 1.e., every thread gets a local copy of the variable. This
solution requires the explicite declaration of those variables by the application programmer and some
changes in the compiler to support the handling with thread-specific data.

4 RA-TR-96-05, © TUCZ.

5.2 Node-to-Node Communication

Communication between nodes is very easy to implement because of the common address space of all
threads. A (synchronous) communication operation requires the synchronization of the participating
nodes and a data transfer operation (a simple memcpy) from the sender to the receiver(s).

Prototypes for a basic SendMessage() / RecvMessage () function are introduced in the following:

typedef struct {
sem_t sendReady, recvReady;
void *message;
unsigned int bytes;
unsigned int *transfered;

} Channel_t;

unsigned int SendMessage (void *message, unsigned int bytes, Channel_t *channel)
{

unsigned int transfered;

channel->bytes = bytes;
channel->message = message;
channel->transfered = &transfered;
sem_signal (&channel->sendReady);
sem_wait (&channel->recvReady);
return (transfered);

}

unsigned int RecvMessage (void *message, unsigned int maxBytes, Channel_t *channel)
{

unsigned int transfered;

sem_wait (&channel->sendReady);

transfered = *channel->transfered = min (maxBytes, channel->bytes);
memcpy (message, channel->message, transfered);

sem_signal (&channel->recvReady);

return (transfered);

A channel_t structure is used for synchronous uni-directional communication. It contains a semaphore
for the synchronization of the sending and the receiving node respectively, a pointer to the message to
be passed, the size of the message in bytes, and a help variable the store the actual transfered number
of bytes.

The SendMessage () function prepares the channel structure (sets the pointer to the message and the
size), signalles the receiver that it is ready to send, and waits for the receiver to fulfil the operation.
The receiver waits until the sender is ready to send, and then copies the message into its own buffer.
It sets the actual length of the transfered message (the minimum of the requested sizes of the sender
and the receiver) and signalles the sender for completion.

The time needed to synchronize the sender and the receiver depends on the implementation of the
semaphore functions. If it 1s neglected, only the time of the memcpy operation remains. So the memory
bandwidth of the underlying hardware architecture determines the peak communication bandwidth
for a message passing emulation.

This was examined on both the KSR1 and the ProLiant 4000, with the packet size and the number
of active processors as parameters

RA-TR-96-05, @ TUCZ. 5

Memory Bandwidth on KSR-1

25

beak

|
o
~N

[s/se1kain] yipimpueq

0

256 1k 4k 16k 64k 256k M
packet size [bytes]

64

16

Memory Bandwidth on ProLiant 4000

90

[s/se1hkain] yipimpueq

im

packet size [bytes]

Figure 4: Memory bandwidth on the KSR1 and the ProLiant 4000

RA-TR-96-05, © TUCZ.

The test program does the following:

A packet of fixed size 1s copied from its source location to the destination. The source array was
initialized before by processor i, so that its contents is held in the local processor’s cache (if the packet
fits in). The target array is initialized too, but by processor ¢ + I, so the cache contents of this
processor has to be invalidated during the memcpy operation.

Curves for a different number of parallel memcpy’ing processors are shown. On the KSR1 the curves
for 2...7 processors are nearly equal (only 2 curves are shown here). That means, the ALLCACHE
engine bandwidth is sufficient for all connected processor nodes. This is not the case on the ProLiant
4000: here the processors have to wait until they become the bus master to access the main memory.
The more processors are used, the smaller 1s the achieved bandwidth.

The peak bandwidth curve was obtained over 100 iterations of the memcpy operation, i.e., the data
got loaded into the cache at the first access and was fetched from there in all other operations.

The communication delays for small packet sizes are determined by the overhead of the function calls.
To compare them with other machines, they are listed as the bandwidth in tables 1 and 2 again (for
the single processor case):

packet size [bytes] | bandwidth [MBytes/s]
16 10.00
24 22.59
32 27.73
64 42.15
96 50.93
128 56.86
256 69.00

Table 1: bandwidth for small packet sizes on the KSR1

packet size [bytes] | bandwidth [MBytes/s]
16 0.49
24 0.45
32 0.98
64 2.93
96 3.03
128 3.13
256 4.83

Table 2: bandwidth for small packet sizes on the ProLiant 4000

6 Influence of Memory Latency on Computation

As seen in the previous chapter, the memory bandwidth of the ProLiant 4000 significantly decreases
with the number of processors concurrently requesting the memory bus. This fact has some influence
on the computation too: if the operands of a numerical operation have to be fetched from main
memory, the computation can be delayed due to bus access conflicts.

A test program was written to examine the influence of the memory latency on computation. Several
numerical operations were executed on each processor — fully independently from others — with the
double vectors a and b and a constant C' as operands. The measured execution times were set in
proportion to the time on one processor.

RA-TR-96-05, @ TUCZ. 7

Parallel Numerical Operations on ProLiant 4000

2.8 T T
a=b — |
| ..aza*a -
2.6 o Gy
a=a+b -
a=za*b --- : :
2.4 r@m e G =
a=alb -~ ‘ ‘
a=sqrt(b) - : :
o
\ut 2+
()
£
3] -
£ 1.8
1
1

processors

Figure 5: Memory latency influence on independent computations on the ProLiant 4000

A simple assignment of vector b to vector a takes 2.6 times on 4 processors in contrast to one processor.
This operation is analogous to the memcpy curve depicted in the previous chapter. Other numerical
operation, like the sum or the product of two vectors, scaling, or elimination, require twice the time of
a serial computation. Only in heavyweight calculations (division, square root) the theoretical speedup
is reached.

7 Global Operations

To examine the efficiency of global operations, two algorithms for the computation of a global sum of
double vectors were implemented:

e a serial version with barrier synchronization
The first thread that enters the barrier initializes a global operation structure by setting the
pointer to its local vector to an intermediate result pointer, and suspends its execution to wait
for the other threads. These add their own vector to the intermediate sum vector (the vector of
the first thread is used for this) as they reach the barrier, and suspend themselfes too. The last
thread computes the final sum vector and then awakenes all suspended threads by a broadcast
on the barrier. Now all threads copy the result into its own local result vector.

e a parallel version via hypercube communication
A hypercube topology is used to exchange the vectors between adjacent nodes. Both the local
and the remote vector are added and sent to the next neighbour. This version has a parallelity
degree of D (the dimension of the hypercube).

8 RA-TR-96-05, @ TUCZ.

The following diagrams compare both versions on the KSR1 and the ProLiant 4000:

Global Sum on KSR-1 (4 Processors)

100 ! ! ! ! ! ! ! ! ! L
- S parallel -

o)
[}
£
0.01 i i i i i i i i i i
1 4 16 64 256 1k 4k 16k 64k 256k 1M
vector length [doubles]
Global Sum on ProLiant 4000 (4 Processors)
i BVihts S A S e e
: : : : : : : para”el 77777
10 | :
1
o)
Q 0.1
£ I
0.01 |
0.001 f
0.0001 i i i i i i i i i i
1 4 16 64 256 1k 4k 16k 64k 256k 1M

vector length [doubles]

Figure 6: Serial and parallel computation of the global sum on the KSR1 and the ProLiant 4000

RA-TR-96-05, © TUCZ.

As can be seen, the serial algorithm works faster than the parallel one on both machines. There
might be two reasons for that: at first, the global sum is a very cheap numerical operation (see figure
6). More complex operation should bring both curves nearer to each other. And secondly, only 4
processors were used (there were not more processors available on the KSR1 to build a hypercube
of dimension 3). The more processors calculate in parallel the higher should be the speedup of the
parallel algorithm.

8 Conclusions

The communication bandwidth achieved in a message passing emulation on shared memory architec-
tures is mainly determined by their memory bandwidth and therefore is often much higher compared
with distributed memory architectures. An important demand to the memory system 1s scalability: a
processor’s access to global memory should not be delayed by concurrent independent accesses of other
processors. The use of local processor caches significantly increases the speedup, so caches should be
as large as possible.

Computations should contain complex operations rather than simple, if the memory bandwidth of the
underlying architecture is not sufficient for parallel work of all processors. Otherwise a decrease of
speedup 1s the consequence, even if the operations are fully independently of each other.

For global operations there exists a break-even point, where a serial implementation is still faster
than a parallel one (based on the model of true message passing implementations, e.g. hypercube
communication). There are very efficient global synchronization methods for threads (e.g. barriers)
which can overweigh the parallel versions with their several local synchronizations.

References

[1] T. Radke. Parallel Programming with User-level Threads, Technical Report TUCZ / RA-TR-96-3,
Computer Science Department, University of Technology Chemnitz, 1996.

[2] L. Grabowsky. Parallel FEM implementations on shared memory systems, Technical Report
TUCZ / RA-TR-96-4, Computer Science Department, University of Technology Chemnitz, 1996.

[3] KSRI Principles of Operations, Kendall Square Research Corporation, Massachusetts, 1993.

[4] Pentium®™ Processor User’s Manual, Intel Corporation, 1994.

10 RA-TR-96-05, © TUCZ.

