
Computer Architecture Technical Report

TUCZ � RA�TR������

Message Passing E�ciency on Shared Memory Architectures

Thomas Radke

University of Technology Chemnitz�Zwickau

Department of Computer Science

Computer Architecture

Prof� Dr� W�Rehm



� Introduction

Especially in the framework of the newly founded �Sonderforschungsbereich SFB ��� � Numerische
Simulation auf massiv parallelen Rechnern�� other parallel architectures � namely shared memory
systems � are to be investigated for their ability to e	ciently solve the addressed problems� Two
principle ways are possible to implement parallel programs on shared memory architectures� First�
one can use multithreading as the basic programming model for his
her implementation��
� This
guarantees the best use of the facilities of the underlying hardware� The other way is to use a message
passing interface� that resides on top of multithreading� and write a CSP program�

The �rst way was evaluated at our department by porting a module of an existing message passing
program �FEM solver� onto a shared memory system��
� Tests showed that good e	ciency results can
be obtained for small problem sizes mapped onto few processors� But the port took a considerable
amount of time� and writing a multithreaded program appeared to be even harder than de�ning the
same problem with the message passing paradigm�

As there are comprehensive experiences at the University of Technology Chemnitz with message
passing programming on the Parsytec massively parallel computer series� we concluded that the second
approach should be favourized in the SFB ����

This paper describes the potential facilities for message passing on � shared memory systems available
at the Department of Computer Science� the KSR� from Kendall Sqare Research� and Compaq�s
ProLiant ����� The theoretical e	ciencies of a message passing interface are given as communi�
cation bandwidth� communication latency� parallelity of communication and computation� and the
implementation of global operations� E	cieny losses due to the implementation of the underlying
multithreading functionality are not studied here in detail� the main intention was to evaluate the
shared memory hardware architecture�

RA�TR������� c� TUCZ� �



� The KSR� Architecture

The KSR� parallel shared memory computer �built by Kendall Square Research� consists of � proces�
sor nodes� Each node has a KSR� processor ��� MHz clock� RISC architecture� developed at Kendall
Square Research� with a �rst�level cache of ��� MBytes� half for instructions� half for data� The node�s
main memory is �� MBytes of size� It is called the local cache� but the local processor has access to
local caches of other nodes too� This is realized by the KSR ALLCACHE architecture� all nodes are
chained in a ring �called ALLCACHE engine�� Any access to remote caches is done over this ring�
with a physical bandwidth of � GByte
s� The coherency of global memory is ensured by a local cache
directory in every node�

...

ALLCACHE Engine : 0 1 GB/s

Node 0 Node 1 Node 7

Processor KSR1

First-Level Cache
250 kB Instruction

20 MHz

32 MB
Local Cache

Processor KSR1

First-Level Cache
250 kB Instruction

20 MHz

32 MB
Local Cache

Local Cache Local Cache

Processor KSR1

First-Level Cache
250 kB Instruction

20 MHz

32 MB
Local Cache

Local Cache
Directory Directory Directory

250 kB Data250 kB Data 250 kB Data

Figure �� Architecture of the KSR� computer ��


Because there is no explicite global main memory� the KSR� computer is classi�ed as COMA archi�
tecture �cache only memory access��

� RA�TR������� c� TUCZ�



� The Compaq ProLiant ���� Architecture

The ProLiant ���� is a symmetric multiprocessor PC system� built by Compaq� It has � processors
�Intel Pentium �� MHz� � KBytes on�chip cache for instructions and data respecticely�� Each pro�
cessor module is supplied with its own second�level cache ���� KBytes�� Access to main memory is
realized by the Compaq TriFlex bus� with a peak bandwidth of ��� MBytes
s�

Compaq TriFlex Bus 267 MB/s

Node 0 Node 1 Node 2 Node 3

Main Memory
96 MB

Intel Pentium
66 MHz

First-Level Cache
8 kB Instruction
8 kB Data

256 kB
Second-Level Cache

Intel Pentium
66 MHz

First-Level Cache
8 kB Instruction
8 kB Data

256 kB
Second-Level Cache Second-Level Cache

Intel Pentium
66 MHz

First-Level Cache
8 kB Instruction
8 kB Data

256 kB
Second-Level Cache

Intel Pentium
66 MHz

First-Level Cache
8 kB Instruction
8 kB Data

256 kB

Figure �� Architecture of the Compaq ProLiant ����

The Compaq ProLiant ���� has a UMA architecture �uniform memory access�� All processors have
the same access time to main memory�

RA�TR������� c� TUCZ� �



� The Multithreading Programming Model

Multithreading extends the process concept of classical UNIX operating systems by the opportunity�
that a process itself can spawn several threads of control at runtime� The threads have an own
stack and register set� so that they can run in parallel� The process address space is shared between
all threads� Global variables can be used for inter�thread�communication� Synchronization facilities
�mutexes� semaphores� condition variables� barriers� are used to implement controlled access to shared
variables and to synchronize threads at speci�c program points�

* register set
* stack
Thread

* register set
* stack
Thread

* register set
* stack
Thread i j k

Multithreaded Process

global shared data

Figure �� Threads in a multithreaded process

� Message Passing on Top of Multithreading

The emulation of message passing in a multithreaded environment can be expressed as following�

� Threads become the nodes of the message passing program�

� Communication is done via synchronization of threads and simply copying of the data from the
sending node to the receiver�

��� Threads as Nodes

In distinction to message passing programming under PARIX� where the whole main program is
duplicated onto all processor nodes at load time� threads begin their execution in a start function
from within the same process� This could be done implicitely by calling a function

int MP�Init �unsigned int num�nodes� void ��start�fn� �void �arg���

with start fn specifying the function to start execution of the thread with the single argument arg�
and num nodes determining the number of nodes to create�

Another distinction is the declaration of global variables� In a PARIX program� all global variables
are visible to the local node only� In multithreaded programs these variables are shared between all
nodes� A possible way to solve this problem is the introduction of private data� Each variable with
an attribute private becomes thread�speci�c� i�e�� every thread gets a local copy of the variable� This
solution requires the explicite declaration of those variables by the application programmer and some
changes in the compiler to support the handling with thread�speci�c data�

� RA�TR������� c� TUCZ�



��� Node�to�Node Communication

Communication between nodes is very easy to implement because of the common address space of all
threads� A �synchronous� communication operation requires the synchronization of the participating
nodes and a data transfer operation �a simple memcpy� from the sender to the receiver�s��

Prototypes for a basic SendMessage�� � RecvMessage�� function are introduced in the following�

typedef struct 	

sem�t sendReady� recvReady�

void �message�

unsigned int bytes�

unsigned int �transfered�


 Channel�t�

unsigned int SendMessage �void �message� unsigned int bytes� Channel�t �channel�

	

unsigned int transfered�

channel��bytes 
 bytes�

channel��message 
 message�

channel��transfered 
 �transfered�

sem�signal ��channel��sendReady��

sem�wait ��channel��recvReady��

return �transfered��




unsigned int RecvMessage �void �message� unsigned int maxBytes� Channel�t �channel�

	

unsigned int transfered�

sem�wait ��channel��sendReady��

transfered 
 �channel��transfered 
 min �maxBytes� channel��bytes��

memcpy �message� channel��message� transfered��

sem�signal ��channel��recvReady��

return �transfered��




A channel t structure is used for synchronous uni�directional communication� It contains a semaphore
for the synchronization of the sending and the receiving node respectively� a pointer to the message to
be passed� the size of the message in bytes� and a help variable the store the actual transfered number
of bytes�

The SendMessage�� function prepares the channel structure �sets the pointer to the message and the
size�� signalles the receiver that it is ready to send� and waits for the receiver to ful�l the operation�
The receiver waits until the sender is ready to send� and then copies the message into its own bu�er�
It sets the actual length of the transfered message �the minimum of the requested sizes of the sender
and the receiver� and signalles the sender for completion�

The time needed to synchronize the sender and the receiver depends on the implementation of the
semaphore functions� If it is neglected� only the time of the memcpy operation remains� So the memory
bandwidth of the underlying hardware architecture determines the peak communication bandwidth
for a message passing emulation�

This was examined on both the KSR� and the ProLiant ����� with the packet size and the number
of active processors as parameters�

RA�TR������� c� TUCZ� �



0

5

10

15

20

25

16 64 256 1k 4k 16k 64k 256k 1M

ba
nd

w
id

th
 [M

B
yt

es
/s

]

packet size [bytes]

Memory Bandwidth on KSR-1

peak
P = 1
P = 4
P = 7

0

10

20

30

40

50

60

70

80

90

16 64 256 1k 4k 16k 64k 256k 1M

ba
nd

w
id

th
 [M

B
yt

es
/s

]

packet size [bytes]

Memory Bandwidth on ProLiant 4000

peak
P = 1
P = 2
P = 3
P = 4

Figure �� Memory bandwidth on the KSR� and the ProLiant ����

� RA�TR������� c� TUCZ�



The test program does the following�
A packet of �xed size is copied from its source location to the destination� The source array was
initialized before by processor i� so that its contents is held in the local processor�s cache �if the packet
�ts in�� The target array is initialized too� but by processor i � �� so the cache contents of this
processor has to be invalidated during the memcpy operation�

Curves for a di�erent number of parallel memcpy�ing processors are shown� On the KSR� the curves
for ����� processors are nearly equal �only � curves are shown here�� That means� the ALLCACHE
engine bandwidth is su	cient for all connected processor nodes� This is not the case on the ProLiant
����� here the processors have to wait until they become the bus master to access the main memory�
The more processors are used� the smaller is the achieved bandwidth�

The peak bandwidth curve was obtained over ��� iterations of the memcpy operation� i�e�� the data
got loaded into the cache at the �rst access and was fetched from there in all other operations�

The communication delays for small packet sizes are determined by the overhead of the function calls�
To compare them with other machines� they are listed as the bandwidth in tables � and � again �for
the single processor case��

packet size �bytes
 bandwidth �MBytes
s

�� �����
�� �����
�� �����
�� �����
�� �����
��� �����
��� �����

Table �� bandwidth for small packet sizes on the KSR�

packet size �bytes
 bandwidth �MBytes
s

�� ����
�� ����
�� ����
�� ����
�� ����
��� ����
��� ����

Table �� bandwidth for small packet sizes on the ProLiant ����

	 In
uence of Memory Latency on Computation

As seen in the previous chapter� the memory bandwidth of the ProLiant ���� signi�cantly decreases
with the number of processors concurrently requesting the memory bus� This fact has some in�uence
on the computation too� if the operands of a numerical operation have to be fetched from main
memory� the computation can be delayed due to bus access con�icts�

A test program was written to examine the in�uence of the memory latency on computation� Several
numerical operations were executed on each processor � fully independently from others � with the
double vectors a and b and a constant C as operands� The measured execution times were set in
proportion to the time on one processor�

RA�TR������� c� TUCZ� �



1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 3 4

tim
e 

/ t
im

e(
1P

)

processors

Parallel Numerical Operations on ProLiant 4000

a = b
a = a * a
a = C*a

a = a + b
a = a * b

a = a + C*b
a = a / b

a = sqrt (b)

Figure �� Memory latency in�uence on independent computations on the ProLiant ����

A simple assignment of vector b to vector a takes ��� times on � processors in contrast to one processor�
This operation is analogous to the memcpy curve depicted in the previous chapter� Other numerical
operation� like the sum or the product of two vectors� scaling� or elimination� require twice the time of
a serial computation� Only in heavyweight calculations �division� square root� the theoretical speedup
is reached�

� Global Operations

To examine the e	ciency of global operations� two algorithms for the computation of a global sum of
double vectors were implemented�

� a serial version with barrier synchronization
The �rst thread that enters the barrier initializes a global operation structure by setting the
pointer to its local vector to an intermediate result pointer� and suspends its execution to wait
for the other threads� These add their own vector to the intermediate sum vector �the vector of
the �rst thread is used for this� as they reach the barrier� and suspend themselfes too� The last
thread computes the �nal sum vector and then awakenes all suspended threads by a broadcast
on the barrier� Now all threads copy the result into its own local result vector�

� a parallel version via hypercube communication
A hypercube topology is used to exchange the vectors between adjacent nodes� Both the local
and the remote vector are added and sent to the next neighbour� This version has a parallelity
degree of D �the dimension of the hypercube��

� RA�TR������� c� TUCZ�



The following diagrams compare both versions on the KSR� and the ProLiant �����

0.01

0.1

1

10

100

1 4 16 64 256 1k 4k 16k 64k 256k 1M

tim
e 

[s
]

vector length [doubles]

Global Sum on KSR-1 (4 Processors)

serial
parallel

0.0001

0.001

0.01

0.1

1

10

100

1 4 16 64 256 1k 4k 16k 64k 256k 1M

tim
e 

[s
]

vector length [doubles]

Global Sum on ProLiant 4000 (4 Processors)

serial
parallel

Figure �� Serial and parallel computation of the global sum on the KSR� and the ProLiant ����

RA�TR������� c� TUCZ� �



As can be seen� the serial algorithm works faster than the parallel one on both machines� There
might be two reasons for that� at �rst� the global sum is a very cheap numerical operation �see �gure
��� More complex operation should bring both curves nearer to each other� And secondly� only �
processors were used �there were not more processors available on the KSR� to build a hypercube
of dimension ��� The more processors calculate in parallel the higher should be the speedup of the
parallel algorithm�

� Conclusions

The communication bandwidth achieved in a message passing emulation on shared memory architec�
tures is mainly determined by their memory bandwidth and therefore is often much higher compared
with distributed memory architectures� An important demand to the memory system is scalability� a
processor�s access to global memory should not be delayed by concurrent independent accesses of other
processors� The use of local processor caches signi�cantly increases the speedup� so caches should be
as large as possible�

Computations should contain complex operations rather than simple� if the memory bandwidth of the
underlying architecture is not su	cient for parallel work of all processors� Otherwise a decrease of
speedup is the consequence� even if the operations are fully independently of each other�

For global operations there exists a break�even point� where a serial implementation is still faster
than a parallel one �based on the model of true message passing implementations� e�g� hypercube
communication�� There are very e	cient global synchronization methods for threads �e�g� barriers�
which can overweigh the parallel versions with their several local synchronizations�

References

��
 T� Radke� Parallel Programming with User�level Threads� Technical Report TUCZ 
 RA�TR������
Computer Science Department� University of Technology Chemnitz� �����

��
 L� Grabowsky� Parallel FEM implementations on shared memory systems� Technical Report
TUCZ 
 RA�TR������ Computer Science Department� University of Technology Chemnitz� �����

��
 KSR� Principles of Operations� Kendall Square Research Corporation� Massachusetts� �����

��
 PentiumTM Processor User�s Manual� Intel Corporation� �����

�� RA�TR������� c� TUCZ�


