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1. Introduction

In 1989, OSF chose the Mach2.5 kernel [1] to be
the basis of the OSF/1 operating system. Mach is a
modern, message passing, operating system microker-
nel. It is a scalable kernel intended for systems rang-
ing from desktop workstations to multiprocessing
supercomputers. As a microkernel, Mach provides a
subset of the functionality found in the typical operat-
ing system. File systems, network protocol services
such as sockets, administration tools such as quota
services and security policies are not provided.
Instead, Mach strives to provide a core collection of
powerful OS neutral abstractions upon which can be
built operating system servers. These abstractions,
tasks, threads, memory objects, messages and ports,
provide mechanisms to manage and manipulate vir-
tual memory (VM), scheduling and inter-process
communication (IPC).

In addition to the advanced features already
present in the Mach microkernel, such as SMP sup-
port, network transparent IPC and support for applica-
tion specific paging policies, the promise of a
microkernel architecture was very appealing. OSF’s

customers have interests in many different operating
systems. We needed a way to pursue a program of
operating systems research that was not unduly oper-
ating system specific. Operating system specific
behavior needed to be separated from OS independent
functionality. Our hope was that a microkernel based
architecture would prove to be more portable and
modular than the monolithic systems that were preva-
lent at the time.

Currently OSF provides two versions of OSF/1.
Each version of OSF/1 is hosted on top of the micro-
kernel. OSF/1 1.3 is a system suitable for worksta-
tions and minicomputers. Its performance is very
competitive with other versions of Unix [7]. OSF/1
AD, available to OSF RI customers, is a system
intended for massively parallel processing supercom-
puters and clusters.

We are interested in promoting the use of our sys-
tems technology within the industrial and research
communities. The OSF MK kernel is freely available
but the OSF/1 server is encumbered by commercial
licenses including the SVR2 Unix license. For many
organizations this is not a problem because they

Ever since the selection of Mach2.5 as the basis of the OSF/1 operating system, OSF intended to base its
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already have a SVR2 license but for others the
licenses have proved to be serious obstacles. In an
effort to remove these obstacles we decided to pro-
duce a free UNIX-like server that would suit the needs
of Mach developers.

We chose Linux for several reasons. It is one of
the most popular free implementations of UNIX.
Some of our members had expressed an interest in a
Linux server. Linux is efficient and has very competi-
tive performance. It provides a very attractive and
effective development environment (GNU tools).
There are several research projects based on Linux
that could potentially benefit from a microkernel.
Finally, it was an opportunity to create and experi-
ment with an operating system server that was not
derived from BSD. CMU’s UX, BSD-Lites and OSF/
1 are all descended from BSD.

In 1995 we began a project to port OSF MK to
the Apple PowerMac and to create a Linux server that
could run on top of OSF MK. The server was hosted
on both Intel x86 and PowerMac platforms. Our goal
is to produce a free system that has competitive per-
formance, is usable on multiple, inexpensive hard-
ware platforms and is of interest to both our members
and the research community. In this paper we will
describe the project in detail and some of our future
plans. We will also describe some of the important
differences between OSF MK and Mach 3.0.

2. OSF MK, the OSF microkernel

Our original interest in Mach was due to the pow-
erful abstractions provided by the kernel, its operating
system neutrality and the promise of greater portabil-
ity and modularity. To a large extent, the microkernel
has lived up to our expectations. OSF and some of our
customers have ported the kernel to several platforms
without undue difficulty. We and our collaborators
have hosted different operating system personalities
on top of the kernel. And for the last few years we
have had an active research program that exploits and
extends the abstractions provided by the microkernel.

Portability

The kernel itself is somewhat complex, yet the
task of porting it to a new hardware platform is fairly
straightforward. We support our version of the micro-
kernel on several different hardware platforms. These
include the Intel x86 family, the Intel i860, the DEC
Alpha, the HP PA-RISC and the Apple/IBM/Motorola
PowerPC. The microkernel has a clean separation of
hardware dependent and hardware independent func-
tionality. Writing the hardware dependent code for the

microkernel usually requires approximately 4 to 6
months. The difficulty in creating an adequate suite of
device drivers can easily exceed the effort necessary
to port the rest of the kernel. In some cases the effort
can be reduced by converting pre-existing drivers. We
will discuss the effort to port the kernel to the Power-
Mac later in the paper.

Server Performance

In addition to different versions of Unix, MacOS,
and MS/DOS have been hosted on Mach. IBM has
hosted OS/2 on their own version of the Mach micro-
kernel. Early efforts to layer OS personality servers
on top of the microkernel have had disappointing per-
formance due to the extra message-based communica-
tion between the system components. Often, as much
as a 40% performance cost has been reported.

Our recent experience has led us to believe that
most of the problems are due to a lack of attention to
performance related issues. After creating the OSF/1
server and noting its disappointing performance, we
embarked on an effort to improve its performance.

Thread Migration

Thread migration was derived from work done on
Mach4.0 at the University of Utah [3]. It aims at
reducing the cost of switching context between the
sender and the receiver of an RPC.

The “thread” abstraction has been split into two
new entities:

• the “activation”, which controls the resources
associated with the thread

• the “shuttle”, which controls the flow of execu-
tion.

During an RPC, the shuttle part of the thread
migrates to an empty (with no shuttle) activation in
the receiver’s task.

Short-Circuited RPC

We can optimize the RPC further by avoiding the
construction of the Mach message and the marshal-
ling and un-marshalling of the RPC arguments. This
is only possible under certain circumstances. It
requires thread migration: the sender’s shuttle can
migrate into an empty activation in the receiver’s task
and start executing the remote procedure directly.

In the current implementation, it also requires
that the sender and the receiver are collocated (see
below), i.e. that they are in the same address space.

Collocation

A collocatable server can be dynamically instan-



tiated as a user task or as a kernel task. When a server
runs as a kernel task, it has direct access to the ker-
nel’s address space and can use the kernel interfaces
with little more code than a simple procedure call.

Modularity is preserved because all interactions
between the kernel and the server are still done
through MIG (Mach Interface Generator) interfaces at
the source level, but the generated code can dynami-
cally detect if the sender and the receiver are in the
same address space and avoid unnecessary data copy-
ing.

Collocating a server as a kernel task should not
be done lightly because an incorrect or malicious col-
located server could corrupt the kernel. But once a
server has been debugged in user-mode, it can be
loaded into the microkernel for best performance.

The collocatable servers of OSF MK are similar
in spirit to the “system actors” found in Chorus [4],
another microkernel based system developed origi-
nally at INRIA.

Combined Effects

Used together, thread migration, short-circuited
RPC and collocation can almost reduce an RPC to a
simple procedure call. The kernel to server system
call exception RPC and the server to kernel system
calls benefit from this optimization, greatly improving
the overall system performance.

The performance of OSF/1 as a kernel task is
very competitive with other Unix systems, including
the original OSF/1.

In a subsequent experiment we ported OSF/1 1.3
and the microkernel to an HP PA-RISC workstation.
Then we layered an HP-UX (HP’s version of Unix)
emulation library on top of OSF/1. This allows us to
run HP-UX applications unchanged on our system.
We then performed a variety of performance tests
including AIM III (a common multi-user Unix bench-
mark), TTCP and others. Most of the tests indicate
that OSF/1 using HP-UX emulation libraries has
equal or superior performance to HP-UX [11]. This
result came as a pleasant surprise and is generally
considered a vindication of our performance efforts.

A Real-Time microkernel

In addition to its portability and its operating sys-
tem neutrality, we were interested in the microkernel
as a foundation for research into real-time and distrib-
uted computing issues. Mach was not designed as a
real-time operating system. The original design focus
was for scalable, multiprocessing timesharing sys-
tems. Extensive use of lazy evaluation techniques

were used in the design of the VM and scheduling
subsystems. In order for OSF MK to be a suitable
foundation for real-time application we had to make
enhancements to the microkernel ranging from the
prosaic, such as pre-emption, clocks and alarms to the
innovative, such as real-time RPC, the CORDS
framework for network protocols and “paths”.

Pre-emption

Before the microkernel can be suitable for real-
time applications it must provide reasonable, predict-
able behavior. Complex real-time operating systems,
like the various real-time Unix systems and the OSF
microkernel all use pre-emption to avoid indetermi-
nate event latencies because there are certain features
that, though desirable, are inherently unpredictable.
Our pre-emption strategy exploits the fine-grained
locks already in the kernel to provide Symmetric
Multi-Processing (SMP) support. This naturally led to
a fully preemptible system [5].

Mach 3.0 had simple and complex locks [6]. Sim-
ple locks provided mutual exclusion and complex
locks provided multiple reader, single writer seman-
tics. In OSF MK, simple locks were enhanced to pre-
vent pre-emption. This resulted in a working system
but because of the original code’s extensive use of
simple locks the resulting system had unacceptable
event latencies. To deal with this problem we added a
new type of lock: a mutex lock. A mutex lock is an
inexpensive, mutual exclusion blocking lock. The dif-
ference between a simple lock and a mutex lock is
that a kernel thread can be preempted while holding a
mutex. Most of the algorithms that used simple locks
were converted to the new mutex locks.

In the initial version of the system it was possible
to have unwarranted context switching between time-
sharing threads due to pre-emption. This problem was
corrected by a simple modification to the pre-emption
code. Preemption only occurred if the higher priority
thread was a fixed priority thread. With this change,
the cost of enabling pre-emption in an SMP environ-
ment was negligible when measured by a standard
benchmark like AIM III. In a uni-processor environ-
ment, the cost of pre-emption is identical to the cost
of enabling SMP locks, i.e., approximately 10%.
Since our preemption mechanisms are integrated so
closely with the SMP locking mechanisms this is not
surprising.

Priority Inversion

Kernel pre-emption created a new problem - a
type of scheduling anomaly sometimes referred to as
a priority inversion [7]. Priority inversions can occur



when a high priority thread becomes dependent on or
blocked by a lower priority, preempted thread. We
designed a straightforward priority boosting protocol
inside the kernel to deal with priority inversions. Pri-
ority boosting propagates across dependencies, not
just locks. If a thread blocks and becomes dependent
on another thread, then the thread controlling the
dependency is boosted. If the boosted thread is
blocked by another dependency then the boosting
propagates down the dependency chain. A thread
remains boosted until it releases its last dependency.

This algorithm is not perfect in that some threads
remain boosted longer than absolutely necessary. But
it is very simple and inexpensive.

Real-time RPC

The Real-Time RPC [8] is not layered on top of
message based IPC. Implementing RT-RPC as a new
kernel service had important advantages:

RPC specific optimizations can be made along
the entire RPC path (our RPC is twice as fast as the
Mach3.0 RPC optimizations). Real-time RPC specific
behaviors, such as alerts, orphan detection, predict-
able delivery and nested time constraint propagation
are possible. An efficient, unified programming model
for invoking operations across module boundaries
within a task, across the task/kernel boundary or
across task boundaries is possible.

The client side of a RT RPC is very similar to a
message based RPC. In both cases threads invoke
RPCs using ports and the client thread waits for the
server to process the request and reply. The server
side is somewhat different. Instead of a pool of
threads waiting in a message receive loop, a server
creates a pool of “empty threads”. These threads have
no scheduling state. When a client invokes a server
and a server thread is available, the kernel chains the
client and server threads together and upcalls the
server immediately. Many client thread attributes,
such as scheduling attributes, are propagated as well
as the normal RPC parameters associated with the
server’s operational interface. When the server com-
pletes the service requested by the RPC and replies,
the server thread becomes empty and a candidate for
future upcalls. The reply parameters are propagated
back to the client which returns from the invoke and
resumes execution.

If no server threads are available then the client
thread is blocked. When a server thread eventually
becomes available then the scheduling policy selects
the appropriate client thread based on its scheduling
attributes and it is chained to the server thread. In this

way, client threads are serviced in the correct order.
This avoids the scheduling anomalies introduced by
Mach IPCs port queues and ordered message delivery
guarantees and it makes it possible for servers to pro-
vide service according to client specified time con-
straints.

Alerts

Sometimes it is important to signal or generate an
exception at the head of an RPC chain rather than a
thread somewhere in the middle. One reason for doing
this could be the elapsing of a deadline specified by
one of the threads in the chain. Alerts are the mecha-
nism used, by either the kernel or an application, to
generate a timely exception at the head of an RPC
chain.

When an alert is posted to thread A, which is not
the head of a chain (suppose a A->B->C->D RPC
chain), the kernel propagates the alert towards the
head. When the thread that is the current head of the
chain is located, in this case thread D, it is suspended
and an alert exception upcall is made to the thread’s
exception port. This gives the task with thread D a
chance to respond in a timely fashion to the event that
triggered the alert. By using upcalls instead of mes-
sages the time constraints of the target thread can be
propagated to the exception handler. In this way, the
exception processing can proceed without risk of a
scheduling anomaly. The return value in the reply
from the exception upcall indicates to the kernel
whether the alert was successfully handled or not. If it
was not handled then thread D is terminated (just as
with any unsuccessfully handled exception) and the
alert is raised on thread C, the new head of the chain.
Alerts will be back propagated up the chain until the
thread originally alerted is reached.

Orphans

Node failures or other events such as task or
thread termination can result in broken chains. Detect-
ing and eliminating the orphaned chain fragment in a
timely fashion is important in real-time systems.
Responding to whatever failure or event caused the
chain to break is as important as responding to any
other external event. In some systems, timely
response to failures is more important than the pro-
cessing of ordinary events.

When a chain is broken the rooted portion of the
chain is immediately restarted. It returns from the
RPC invocation with an error indicating the chain was
broken and takes whatever action is deemed appropri-
ate by the application.

An orphan alert is posted to the head of the



orphaned chain. The alert is propagated to the head of
the chain where an orphaned exception is generated.
This is a fatal alert than cannot be handled correctly,
i.e., when the orphaned exception handler returns the
thread is terminated and the alert is raised on the next
thread up the chain. This gives each thread on the
chain a chance to clean-up (release locks, undo or per-
form compensating actions) before being terminated.

Characterization Tools (ETAP)

ETAP (Event Trace Analysis Package) [14] is a
tool for characterizing the performance and behavior
of real-time applications as well as the system soft-
ware. ETAP is straightforward in design. The kernel
reserves a block of memory as a circular message
buffer. The size of the buffer is configurable. The ker-
nel has been instrumented with a variety of probes.
When activated these probes create entries in the cir-
cular buffer. Probe entries contain a type field, a time-
stamp, a thread ID tuple, and probe specific informa-
tion. Probes can be used to capture a wide range of
information such as context switching events, system
calls, lock events, device events, etc. There are global
and per thread probes. Any subset of the probes can
be dynamically activated or deactivated. Applications
with probes write to the buffer. There is a second task
that reads the buffer and records it on disk where the
information can be subsequently analyzed using dif-
ferent report generation programs. When configured
into the kernel, inactive probes incur an insignificant
overhead. Approximately 1 percent when running
AIM III.

The thread ID tuple identifies the thread and its
shuttle or RPC chain. The RPC chain identifier allows
us to determine which client thread a server is acting
for. This is an invaluable tool for tracking the causal
dependency of events in a client/server system. It has
also become a valuable tool for debugging the kernel
and applications.

Miscellaneous

In addition to the work already described we have
made a variety of relatively small changes and addi-
tions to the microkernel. These include:

• POSIX compatible fixed priority scheduling
policies (FIFO and RoundRobin)

• Configurable number of priorities (32 to 1024)
• Support for multiple clocks and an alarm (time-

out) service.
• Counting Semaphores and Locks for inter-task

synchronization
• Real-time threads library (cthreads assumes a

timeshare scheduling policy)
• Extensions to IPC to provide control over the

lazy evaluation of buffer copies.

We are currently experimenting with a schedul-
ing framework [15]. This framework both simplifies
the task of creating a new scheduling policy, such as
Earliest Deadline First or Best Effort and coordinates
the scheduling of threads and synchronizers. Includ-
ing the synchronizers in the framework enables the
development of scheduling policies that can deal with
scheduling anomalies such as priority inversion.

Networking with CORDS

The support for networks in Mach3.0 was limited
to the packet filter. Protocols and network transparent
IPC were expected to be implemented as user space
servers. This had a negative effect on the performance
of most uses of the network. The architecture also pre-
sented significant obstacles to a correct implementa-
tion of network IPC. In OSF MK we have added an
object oriented framework for network protocols,
Communication Objects for Reliable, Distributed
Systems (CORDS) [9]. CORDS is derived from the
xkernel, developed by the University of Arizona [10].

The CORDS framework has many features to
simplify the task of implementing network protocols.
Complex protocols can be decomposed into a graph
of “micro-protocols”. A protocol graph can be
extended across protection boundaries permitting por-
tions of a protocol graph to exist in a task while other
parts exist in the kernel.

There is a notion of a “path” that describes the
route a message will take through the protocol graph.
Resources such as message buffers and threads can be
attached to paths allowing the protocol designer to
manage the resources needed to guarantee the end-to-
end quality of service needed by the application. Paths
also provide a natural means for the treatment of pro-
tocol parallelism. We have used the framework to
develop a real-time distributed clock protocol based
on the Cristian algorithms, node-alive protocol,
ordered reliable broadcast protocols, Mach IPC and
RPC protocols among others.

Multi-Computers and Clusters

DIPC (Distributed IPC) and XMM (eXtended
Memory Management) [13] provide transparent inter-
node communication and shared memory on
NORMA (No Remote Memory Access) architectures.

DIPC extends Mach IPC in a way that permits
applications running on any node to view Mach
abstractions such as tasks, threads, memory objects
and ports in a transparent way. XMM supports distrib-
uted shared memory.



The OSF/1 AD system uses these two Mach sub-
systems to provide a scalable, single system image of
UNIX. It is intended for massively parallel processing
environments, such as the MPP Intel Paragon, but also
for clusters of interconnected workstations.

Configurable Kernel

With all these extensions, the microkernel has
grown to become unacceptably large. We want the
microkernel to run on low-end machines and we also
want to target embedded systems, so we embarked on
a program to make most of the microkernel’s features
configurable[12]. The target is a minimal microkernel
that could run on a compute-only node and would
only perform basic scheduling and IPC.

Miscellaneous

We are developing or planning other projects on
OSF MK, which are less relevant to the Linux server
project because they are not integrated in the mainline
microkernel or not freely available. These projects
include:

• fault tolerance (still in the design phase),
• high trust: this implies a complete re-implemen-

tation of OSF MK in C++ with strict layering
for even better modularity [16].

3. Port of Mach to PowerMac

Introduction

The OSF MK microkernel is a mature technology
on various machine types and processor architectures.
Apple Computer Inc. asked the OSF to make available
a free, microkernel based operating system on their
PowerMacintosh series of computers. The major part
of the port to PowerMacintosh was that of porting the
OSF MK microkernel.

The range of PowerMacintosh machines use vari-
ous different PowerPC processors, together with very
different machine architectures, ranging from a board
architecture very close to that of the 68000-based
Macs through to the latest CHRP machines. We ini-
tially targeted the PowerMac 8100/80 machines
which contain the PowerPC 601 microprocessor and a
board architecture similar to that in the 68000 Macs.

To illustrate the clean separation between
machine-dependent and machine-independent code,
we note that in porting OSF MK to the PowerMac, the
modifications to the generic parts of OSF MK con-
sisted of two minor source file additions to preproces-
sor options.

The Early Stages of a Kernel’s Life

When porting an operating system to any new
processor, the development environment and compiler
tool chain is the first thing which needs to be in place.
Since the PowerMac did not have any Unix-like envi-
ronment available, we set up a cross-compiling envi-
ronment to build both Mach and, later, the Linux
server. The host machines used for the development
were x86 machines running Linux, and HP700
machines running OSF/1. Midway through the devel-
opment, the x86 machines were switched from the
monolithic Linux to running the Linux server, in order
to provide a self-hosting alpha test site.

The compiler tool chain chosen was GCC 2.7.1,
which supports the cross-compilation of PowerPC
code using the elf binary format. We also used a
crossed version of GDB for remote debugging via a
serial line, allowing symbolic debugging of the kernel
from an extremely early stage.

Once the tool chain is in place, work can begin on
porting the kernel. Initially, the only machine-depen-
dent requirements are a means of I/O, traditionally
done via a serial port connected to the development
machine. Below is a list of the steps taken in the ker-
nel port:

• simple program cross-compiles and links.
• program loads and performs minimal polled I/O

on the serial line
• printf works
• remote debugging stubs work
• kernel code linked in to remote debugger stubs
• kernel VM initializes
• traps and exception handlers (first VM fault)
• building user libraries and first user process
• bootstrapping first user process
• first system call from user process works
• clock interrupts implemented
• interrupt driven console device runs
• testing and debugging

The first user task that was executed was a kernel
benchmarking and testing suite called MPTS (Micro-
kernel Performance Test Suite) [19] and it took
approximately 5 engineer-months to have a booting
system which correctly executed the full benchmark-
ing suite.

Once the minimal kernel functionality is com-
plete, there remains the issue of device drivers. Device
drivers are more platform dependent than they are
processor dependent, and on many platforms device
drivers may be reused or easily adapted from those
written for previous ports. This was the case for both
the serial line driver and for the SCSI controller on the



PowerMacs. Writing a small stub of PowerMac-
dependent DMA code meant that the original drivers
could be used with little modification.

Trade-offs

In any first implementation of an operating sys-
tem, the trade-off of simplicity and debuggability is
made against those of performance and functionality.

Once an initial version of the kernel is working,
more time can be spent padding out stub routines and
in optimizing those routines which were written for
simplicity instead of performance (routines such as
bcopy plus bit testing and setting routines start out
written in C, before being optimized into hand-coded
assembler).

Another trade-off made was to concentrate on
obtaining functionality on the available test hardware.
Minimal effort was made to cater for other processors
in the PowerPC family or for other PowerMac
machine architectures, since testing on these other
machines was not possible. However, the assembly
code and low-level exception handlers have been writ-
ten so that it should be simple to incorporate the
behavior of the other PowerPC processors (the 603
and 604 in particular). Additional device drivers and
interrupt handling code will have to be written for the
other machine architectures when porting to those
machines.

4. Linux Server Architecture

A Single Server

Our Linux server is a “single server”, meaning
that the entire Linux functionality resides in one sin-
gle Mach task. The alternative to this design is the
“multi-server” design, where functionality is split
between smaller specialized tasks communicating
though Mach RPC.

The multi-server design takes better advantage of
the Mach architecture and allows one to re-use more
code between different OS personalities: a generic ter-
minal server could be shared by most OS servers for
example. The drawbacks are performance and com-
plexity. Performance is impacted by the cost of the
extra communication between the various servers.
Because servers can call each other in random ways,
complex RPC chains are created, making it hard to
implement some aspects of the OS functionality, like
interrupting a system call for example. One has to
implement potentially complex mechanisms to chase
the system call through the various servers and abort it
in a sensible way.

Although we are convinced that multi-servers are
the way to go to produce high-quality operating sys-
tems on top of Mach, this strategy was not applicable
in our case because we started from an existing mono-
lithic kernel and we wanted to maximize the code
reuse ratio to make it easier to track new releases of
Linux and leverage the Linux community effort.

A Multi-Threaded Server

A server on top of Mach simply receives and
replies to requests from user tasks or from the micro-
kernel. It has no explicit control on scheduling nor
hardware interrupts, so it cannot decide what it needs
or wants to do at a given time. We do not want to add
code everywhere to check if there is something more
important to do (like receive an incoming network
packet or disk block) or to manage explicit context
switches when we can rely on Mach threads and the
user-mode “cthreads” library. This library offers vari-
ous synchronization primitives (simple locks, mutexes
and condition variables) and hides most of the neces-
sary synchronization of the underlying Mach kernel
threads.

The Linux server has dedicated threads to handle
the following tasks:

• keep track of time (“jiffies”)
• process replies to asynchronous device requests
• process incoming network packets
• process pager requests
• dispatch fake interrupts
• idle thread, to wake up timed out tasks and tasks

with pending signals
• process system call and exception messages

from user tasks.

Most of these threads wait on a dedicated Mach
port to receive a messages. The system call threads
are managed as a pool and wait on a port set regroup-
ing all the user tasks’ exception ports. A system call
thread is not dedicated to a given user task.

The system is serialized by a global mutex.
Server threads must acquire it before doing anything
sensible and release it when about to block.

System Call Redirection

As we mentioned earlier, communication
between the user applications and the server is a criti-
cal issue for performance. Mach3 offers a system call
emulation facility based on the redirection of the con-
trol flow to an emulation library, a piece of code that
resides in the user address space and is able to com-
municate with the server via Mach RPC. For perfor-
mance reasons, this library can implement some



system calls (getpid, signal mask operations, etc...)
locally without any interaction with the server [18].

Although this provides excellent performance, it
means that the server functionality is shared between
this emulation library and the server itself, leading to
extra complexity and consistency problems; the server
cannot really consider the emulation library like the
rest of the user code, especially with respect to signal
handling. The emulation library is not protected from
user access and is therefore a potential Trojan horse
for a malicious user. It is extremely complex (and
inefficient) to protect the server against malicious
usage of the emulation library’s privileged communi-
cation to the server. Furthermore, multi-threaded
applications imply even more complexity for the emu-
lation library, which has to be fully-reentrant and has
to identify the user threads.

For these reasons, we decided against the use of
such an emulation in our servers. We extended the
Mach exception mechanism to be more flexible and
efficient [17]. With OSF MK, a system call from a
user task raises an exception and enters the microker-
nel, which sends an exception RPC to the server, pro-
viding the user thread’s state. This is similar to the
way a system call enters a traditional UNIX system.

Combined with the collocation, thread migration
and short-circuited RPC microkernel improvements,
this method has proved to have competitive perfor-
mance.

User Memory Access

Having the Linux server running as a regular user
task makes it harder for it to access the memory of its
user processes. The monolithic Linux kernel just uses
segment registers to get inexpensive access to the user
address space, but the Linux server has to use the
Mach VM interfaces. Since this is also a critical
aspect for the overall system performance. We cannot
afford to suffer the overhead of switching to the
microkernel for each access to user memory. We map
the necessary user memory areas into the server’s
address space using Mach VM services. Once the
mapping is done, the server can access the memory
without any performance penalty.

When the Linux server is collocated in the micro-
kernel’s address space, it can even avoid to setting up
the mapping and use the microkernel’s copyin and
copyout mechanisms, which are similar to the mono-
lithic Linux memcpy_fromfs and memcpy_tofs
interfaces. There is still an extra cost because the
server does not have direct access to the microkernel
routines (it is a separately linked task) and has to go

through short-circuited-RPC-like interfaces. This
overhead is not a problem in itself, but is emphasized
by Linux’s habit of doing lots of very small (byte or
word) copies at a time. By re-organizing some pieces
of code in critical places (mainly in the exec path), we
managed to get reasonable performance.

Device Access

The device drivers are in the microkernel, but the
server has to access them and let its processes use
them. Linux handles device numbers and uses its own
device operation routines. Mach names its devices
with regular names (“console”, “hd0a”, “fd0a”,
“sd0a”, etc...) and offers its own device interfaces. In
the Linux server, we just added a generic emulation
layer, replacing the bottom half of most Linux device
drivers.

The device emulation code fulfills two tasks:
• translate a Linux device (major, minor) into a

Mach device name
• translate Linux device operations (open, read,

write, etc...) into the appropriate Mach device
requests.

Just as Linux devices get registered when they are
detected, we register some additional information, for
instance a couple of routines to translate a Linux
device number into the equivalent Mach device name
and the reverse. The “device operations” structure is
replaced with more or less generic routines (we have a
set of routines for block devices and another for char-
acter devices): accessing an IDE disk, a SCSI disk or
a floppy does not make any difference for the Linux
server once it has found which Mach device to use.

The device specific code is therefore reduced to
the initialization routine, and most of these routines
only differ by the Mach device name they register.

Scheduling

Scheduling is another of the microkernel’s duties.
The Linux “schedule” routine is still used to scan the
task list for newly runable tasks, but no actual context
switching between user processes is done in the Linux
server. User tasks “block” when running in one of the
server threads, using some Mach synchronization
primitives provided by the “cthreads” library.

“schedule” calls “condition_wait” when the
current task’s state is no longer TASK_RUNNABLE
and we call condition_signal whenever the task
becomes runable again.



Fake Interrupts

In the monolithic Linux, like in most Unix sys-
tems, pending signals are delivered to a user process
when it returns from kernel mode to user mode. A
user process can enter kernel mode when issuing a
system call, when causing an exception (page fault,
arithmetic error, etc...) or when interrupted by a hard-
ware interrupt (like a clock interrupt). The Linux
server follows this scheme, but will never be inter-
rupted by the hardware since interrupts are handled by
the microkernel. This means that a user process loop-
ing in user-mode without doing any system calls or
exceptions is virtually unkillable because signals will
never be delivered to it.

This problem has affected all Unix servers on top
of Mach3. Some decided to solve this issue by adding
an extra thread in the emulation library, to listen for
messages from the server, and forcing the real user
thread to check for signals when required. Despite the
fact that it adds even more complexity to the emula-
tion library, this could not be applied to the Linux
server because we rejected the emulation library solu-
tion in the first place.

Our solution was to implement fake interrupts to
allow the Linux server to regain control of a user pro-
cess even if does not cooperate. The server takes con-
trol of the user thread, gets its state and jumps to the
system call return code where signals will be pro-
cessed. Race conditions with a possibly incoming or
returning system call are avoided by suspending the
user thread and making sure that it’s suspended in a
safe place, using the “thread_abort_safely” Mach
service. Of course, thread_abort_safely will fail if
there’s an exception message on its way to or from the
server.

Linux Jiffies Emulation

In the monolithic Linux, the “jiffies” global vari-
able counts clock ticks since the system start-up time.
It is incremented in the clock interrupt handler and is
widely used throughout the rest of the system.

The Linux server does not receive clock inter-
rupts and the only way for it to count time is to use the
Mach alarm services, which are obviously more
expensive than a simple increment every 10 millisec-
onds. The OSF/1 server does not manage its own idea
of the time and relies on the microkernel for that. It
has a time-out thread which keeps on blocking and
requesting to be woken up by Mach when the next
OSF/1 time-out expires. Unfortunately, the wide
usage of “jiffies” and our desire to maximize code-
reuse forced us into emulating the Linux kernel’s

behavior.

A jiffies thread is woken up at regular intervals by
the microkernel and increments “jiffies” by the
amount of clock ticks that have passed during its
sleep. The interval could be set to exactly one clock
tick, in which case we would have the same clock pre-
cision as the monolithic Linux, at the expense of a
context switch and some overhead every 10 ms.
Although we have not measured the impact of this
overhead yet, we currently use a 100ms interval.

The real time itself can be obtained more accu-
rately from the microkernel by mapping it in the
server’s address space, and updating the Linux
“xtime” global variable before sensitive uses.

Linux VM Emulation

The Mach VM interfaces allows a user task to
create memory objects and map them in an address
space. Page management is totally hidden by the
microkernel. The obvious place to connect Linux VM
with Mach VM is therefore the “vm_area” structure
management, which is roughly the equivalent of the
“vm_map” structure in Mach.

The Linux page table management code could be
discarded if Linux did not reference the page tables so
widely. To minimize changes to the original Linux
code, we chose to provide a machine-independent
dumb emulation of the page table macros and rou-
tines. The Linux server does not make any sensible
use of these page tables and they are mostly empty,
but it allows more Linux code to compile and run
unchanged.

VM Mappings

When Linux establishes a VM area, the Linux
server has to use the Mach VM interfaces to perform
the equivalent operation. We do that in the Linux
“insert_vm_struct” and
“remove_shared_vm_struct” routines.

Mapping a file is done by creating a memory
object associated with the file and establishing the
mapping with the “vm_map” Mach interface. Allocat-
ing zero-filled memory (for the “brk” system call for
example) is done with the “vm_allocate” Mach inter-
face. When removing a mapping, we use the
“vm_deallocate” Mach interface.

This simple emulation has minimal impact on the
original Linux code and covers the vast majority of
the Linux VM operations. Unfortunately, we had to
rewrite some Linux code to make it more Mach-
friendly. For example, the “brk” system call shrinks a
VM area by removing the old mapping and establish-



ing a smaller one. This works in Linux because the
page tables are not touched so the old memory is still
there when the new mapping comes in place. Our
emulation code discards the memory when removing
the old mapping and cannot resuscitate it when estab-
lishing the new mapping. We just re-arranged the
Linux code to avoid the “remove and replace” trick.

Memory Map

The “mem_map” array contains an entry for
each physical memory page. Since it is widely used
throughout the Linux code, we also chose to emulate
this array and use the Linux page allocator. The server
allocates a virtual memory area as big as the physical
memory and uses this pool of pages when it needs
memory, using the Linux “get_free_page” and
“free_page” routines.

This is unnecessarily inefficient and restrictive,
and we would like to get rid of this implementation in
a future release. If the original Linux code did not use
the mem_map array explicitly but hid it under macros
or in-line routines, it would have given us freedom to
implement whatever page allocation algorithm suits
our architecture. This problem is an illustration of the
advantages of modularity, which allows wider choices
of implementation by reducing the interdependencies
between system components.

External Inode Pager

As mentioned in the previous paragraph, mapped
files are implemented by creating a memory object
associated with the file and mapping this memory
object. The Linux server then has to serve paging
requests from the microkernel for this memory object.
This is done by an external memory manager that we
called the “inode pager”.

The inode pager is currently a single thread run-
ning in the Linux server task. It manages the relation
between a Mach memory object and a Linux inode,
and replies to microkernel paging requests.

When a page-in request comes in, the inode pager
reads the required data from the disk and sends it
back. For a page-out request, the microkernel sends
the page inside the page-out message and the inode
pager writes it back to disk. Of course, the microker-
nel only sends back dirty pages and silently discards
clean ones, so the inode pager never has to write back
text pages for example.

The inode pager is also responsible for flushing a
memory object from the microkernel cache when
needed, for example when a mapped binary is recom-
piled.

Dynamic Buffer Cache

The dynamic buffer cache was a decisive point
when we chose Linux as the free UNIX to port on
OSF MK. We had already experimented a dynamic
buffer cache on the OSF/1 server with excellent
results, but with some problems related to the OSF/1
file system design (it derived from BSD and is paral-
lelized). We looked forward to making an easier
experimentation with Linux, where everything was
already in place.

The challenging part of a dynamic buffer cache
for a Mach-based OS is that the buffer cache (in the
Linux server) and the VM (in the microkernel) need
to interact to let the system make the best use of the
available memory.

Letting the buffer cache grow is the easy part: the
Linux server manages only virtual memory and can
therefore provide the buffer cache with more pages
than there are in the physical memory. The tricky part
is to get the buffer cache to shrink when the system is
short on memory and before it starts paging.

Advisory Page Out

The microkernel doe not report memory short-
age. When it really needs a page, it selects a physical
page and sends a page-out request to the appropriate
memory manager. The Linux server had no way to
know that the system was short on memory before
paging was already started.

OSF extended the external memory manager to
offer “advisory page out”. That is, instead of un-map-
ping a page and sending it to the memory manager,
the microkernel can now leave the page in place, send
a “discard request” to the memory manager and let it
take any appropriate action. The Linux server can
then use the “try_to_free_page” routine and free a
page other than the one selected by the microkernel.
Of course, the microkernel cannot be made to rely on
an external memory manager to eventually free a
page. If the memory manager does not free a page in
time, the microkernel will send the data to the default
pager, a privileged and trusted memory manager.

On the Linux server side, the only major change
required is to allocate the buffer cache pages from a
separate memory object, the size of the physical mem-
ory, and backed by another external memory manager.

Avoiding Double Paging

Apart from making the best use of the available
memory, a dynamic buffer cache also fixes a classic
problem of Mach servers: double paging. The mem-
ory in the buffer cache comes from the disk and will



eventually go back to the disk. There is some space
reserved on disk for this data. Without a dedicated
memory manager, buffer cache pages could be paged-
out to the default pager’s paging space when the
microkernel decides to discard a buffer’s memory.
And when the Linux server decides to re-use this
buffer (either to write it back to disk if it’s dirty, or to
overwrite it with another disk block), the page fault
will cause the page to be read from the paging space.
With a dynamic buffer cache, we get the opportunity
to write the buffer back to disk (if dirty) or just discard
it without any useless paging activity.

5. Linux Server on the PowerMac

Once the Linux server was robust on the Intel
platform, and the Mach microkernel was ready on the
PowerMac, the two needed to be wed. Since Linux
has already been ported to some other PowerPC
machines, we aimed to re-use as much of the code
from the native Linux port as possible, with the goal
of offering complete source and binary compatibility
with this port of Linux on other PowerPC machines,
in a similar way to that already done on Intel
machines.

The major part of porting the Linux server was to
adapt the necessary header files for the Mach server.
This took approximately one week to do, and once
this was done the server was able to start to boot on
the PowerMac.

Being able to use the Linux server on PowerMac
machines was not simply a question of porting the
server, commands and libraries were also needed,
together with a file-system from which Linux could
boot. We added some code to the Mach kernel to rec-
ognize the disk label and partition tables on a Macin-
tosh disk, and ported the mkfs tool from the Minix
distribution to create an initial populated file-system.
As for commands and libraries, we were able both to
build them ourselves and also to recover commands
and libraries from an early binary distribution of
native Linux on the PowerPC. Below is a list of steps
taken in porting the Linux Server to the PowerMac:

• porting the include files
• porting the server’s processor-dependent state
• recognizing Mac disk labels and partitions
• creating a file-system
• booting the Linux server from the file-system
• running init (first server system call)
• paging file found
• running /etc/rc.S (first signal taken)
• single user # prompt
• multi-user

• networking
• self-hosting

The work to generate a minix file-system on a
Mac disk was done in parallel to the port of the Linux
server, using mach_perf as the server to boot from the
file-system. Reaching the multi-user # prompt took
less than three engineer-weeks from the start of the
port to the PowerMac.

Differences with the native Linux

 It is still a little early to give a complete listing of
functional differences between native Linux on other
PowerPC platforms and the Linux server on Power
Macs, especially since both projects are under con-
stant development. One current difference is that the
Linux server offers the full 32-bit address space to
user processes, rather than the restricted 31-bit
address space offered by the native Linux.

6. Performance

We have not had time to make extensive perfor-
mance measurements and analysis for the Linux
server, but we ran a few benchmarks to get an idea of
the critical areas. We used the NONAIM benchmark,
derived from the AIM III benchmark, which measures
the behavior of the system under an increasing work-
load, trying to simulate real life users behavior.

We also ran the Byte benchmarks which give
finer results on the relative performance of more spe-
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cific parts of the system.

The benchmarks were run on a DEC PC450, with
a 50MHz i486 and SCSI disks, running a
Slackware3.0 ELF distribution. The benchmarks
themselves were in a.out format and were run on a
1kB-block ext2 file-system.

We profiled the micro-kernel and Linux server
during those benchmarks and performed quick opti-

mizations in two areas:
• system call path,
• access to user memory.

These optimizations improved some benchmarks
and we now have reasonable performance for AIMIII
throughput when the system is not I/O bound. The
Linux server reaches 93% of the AIMIII performance
of the native Linux kernel.

Next, we started investigating disk I/O perfor-
mance. The default file-system block size is 1 kilo-
byte on Linux. The Linux kernel is able to group disk
requests into larger requests and doesn’t suffer from
the small block size. Neither the Linux server nor the
micro-kernel perform such an optimization currently,
and the penalty is made even worse by the extra over-
head of Mach device interfaces. The result is that we
read only one block per disk revolution.

Conclusion

Although the Byte results show there is still room
for performance improvement, the AIM results are
encouraging; even with the huge system call overhead
penalty and the currently poor disk I/O performance,
we are still within arm’s reach of the native Linux ker-
nel.

We plan to do more exhaustive performance mea-
surements and analysis in the future and to extend our
tests to multi-processor platforms.

7. Status and Future Work

Portability

It took approximately five engineer-months to
convert Linux into a Linux server on the Intel x86
platform and two more engineer-week to port the
Linux server to the PowerMac. Admittedly, this port
was able to re-use some of the machine-dependent
files from the Linux/PowerPC project, but it is a fact
that the code that requires a lot of work when porting
is not used by the Linux server. Bootstrap issues,
device drivers, context switching, trap handling, and,
last but not least, virtual memory management are all
handled by the microkernel and what is left of these
components in the Linux server is mostly machine
independent.

What is left to port is:
• a few header files describing some VM con-

stants, like page size and mask
• the system call and exception handling routine,

which has to fill the Linux registers structure
from the Mach thread state structure

• the “copy_thread” routine to initialize the state
Byte Benchmarks Results



of the new Mach thread during a fork system
call

• the signal delivery routine which pushes the sig-
nal handler stack frame on the user stack.

Status on the Intel Platform

The two main missing pieces of functionality are
virtual consoles, which seem necessary for X11 sup-
port, and the dynamic buffer cache support (the
shrinking part). The performance is reasonable,
although there is plenty of room for improvements.

We will address both the functionality and perfor-
mance issues as soon as possible.

Status on the PowerMac Platform

At the time we write this paper, the PowerMac
has just started booting Linux with a minimal file-sys-
tem. It reaches the “login” prompt and is able to run
most of the commands we have. We have a minimal
set of drivers; we use a serial line as console and can
access the SCSI disks. No floppy, CD-ROM, graphics
or network drivers are available for the moment, but
work is in progress on these.

Linux Code Base

The Linux server is currently based on the 1.2.13
Linux kernel version. It can be seen as a port of the
Linux kernel to new architectures: osfmach3_i386
and osfmach3_ppc.

Because we have always taken care to minimize
the changes to Linux code, it is fairly easy to upgrade
to new Linux kernel releases. We will provide a Linux
server based on the latest 1.3 kernel (or maybe 1.4) as
soon as possible, but our current priority is to com-
plete the ports to the PowerMac.

Linux Device Drivers

A team at Columbia University has developed a
framework to include Linux device drivers into Mach
with virtually no changes. This work was done on
Mach4, but should be fairly easy to adapt to OSF MK.
This would greatly improve the supported hardware
list of the microkernel for the Intel x86 platform.

Development Environment

The OSF uses its own development environment,
called ODE (OSF Development Environment). ODE
is available for free from the OSF, and is currently
required for building OSF MK. Although this still
requires more work, OSF MK should compile for the
x86 and PowerMac platforms from an Intel x86 sys-
tem running Linux (server or monolithic), using a

GCC compiler.

The Linux server is built using the same method
and tools as the regular Linux kernel.

Being isolated from the hardware by the micro-
kernel, the Linux server can share the machine with
other operating system servers. In fact, it was devel-
oped as a regular OSF/1 process, started from a shell
and debugged with a Mach-aware version of GDB
(which can handle multi-threaded applications). This
is a very powerful way to debug the system. There is
no need to reboot the machine before each test and it
provides full user mode debugging possibilities; it is
possible to debug the Linux server with GDB from its
very first instruction.

 Although Linux does not support multi-threaded
tasks (at least not in the way we would like it to), we
were able to start a Linux server from another Linux
server. And more generally, one could run whatever
any desired system personalities in parallel on a single
machine.

The microkernel can be debugged using the pow-
erful (although afflicted with a weird syntax) kernel
debugger on the Intel x86 platform, or using a remote
GDB for the PowerMac.

Availability

The OSF MK microkernel and the ODE develop-
ment environment are protected by the OSF Free
Copyright, allowing free sources and binaries usage,
copying and distribution under certain conditions,
including some restrictions on commercial use. The
Linux server is protected by the GNU General Public
License.

They are both freely available from the OSF
Open Software Mall (http://www.osf.org/mall).

8. Related Work

BSD-Lite Server

Johannes Helander, Jukka Virtanen and others in
Finland developed a BSD-Lite server based on the
BSD4.4 sources. This server has an architecture simi-
lar to the BSD4.3 UX server from CMU: it uses an
emulation library mapped into the user task’s address
space and uses similar code to manage its threads
(CMU c-threads).

They partially ported their server to OSF MK in
March 1995, but their server architecture did not
allow them to take advantage of OSF MK’s perfor-
mance improvements. The Lites server may be ported



to the latest OSF MK free release, sometime in 1996.

We could have used their work as a basis for our
free UNIX server, but, because we do not use emula-
tion libraries and have rather different server architec-
ture designs, we preferred to start from scratch. We
also wanted to demonstrate that a non-BSD UNIX
could be implemented on Mach. OSF/1 and BSD-4.4
have similar VM implementations, derived from
Mach’s VM, making it fairly straightforward to emu-
late with Mach interfaces.

GNU HURD

The GNU HURD has a very innovative and inter-
esting design and might well be the first complete
multi-server OS to tun on top of Mach. Several multi-
server projects have been started at CMU and OSF,
but they never quite reached product-quality, due to
design flaws and a relative lack of interest for such
complex software.

The GNU HURD is not yet available and we
wanted to offer a development environment to our
members and the research community as early as pos-
sible, so we produced yet another single server.

9. Conclusions

We have demonstrated that OSF MK could sup-
port a Linux personality server with reasonable per-
formance and that the combination could be
painlessly ported to a new hardware platform: the
PowerMac.

We are now able to offer a completely free and
unencumbered development environment based on
the microkernel. We hope that the research commu-
nity will find this environment attractive for their
microkernel related projects.
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