ELF: From The Programmer’s Perspective

Hongjiu Lu
hjl@nynexst.com
NYNEX Science & Technology, Inc.
500 Westchester Avenue
White Plains, NY 10604, USA

May 17, 1995

Abstract

In this paper, we discuss the new ELF binary format for Linux specifically from the view of the
programmer. We introduce some techniques which can be used with ELF to control the execution
of a program at run time. We show how to use dynamic linking and dynamic loading under ELF.
We also demonstrate how to use the GNU C/C++ compiler and binary utilities to create shared
C/C++ libraries under Linux.

1 Introduction

The Executable and Linking Format (ELF) is a binary format originally developed and published
by UNIX System Laboratories (USL). It is the default binary format for the executable files used
by SVR4 and Solaris 2.x. ELF is more powerful and flexible than the a.out and COFF binary
formats. Combined with appropriate tools, programmers can use ELF to control the flow of
execution at run time.

2 ELF Types

There are three main types for ELF files.

e An executable file contains code and data suitable for execution. It specifies the memory
layout of the process.

e A relocatable file contains code and data suitable for linking with other relocatable and shared
object files.

o A shared object file (a.k.a. shared library) contains code and data suitable for the link editor
Id at link time and the dynamic linker at run time. The dynamic linker may be called
1d.so.1, libc.so.1 or ld-linux.so.1, depending on the implementation.

The most useful part of ELF lies in its section structure. With the right tools and techniques,
programmers can manipulate the execution of executables with great flexibility.

3 The .init and .fini Sections

On an ELF system, a program consists of one executable file and zero or more shared object files.
To execute such a program, the system uses those files to create a process image in memory. A
process image has segments which contain executable instructions, data and so on. For an ELF
file to be loaded into memory, it has to have a program header which is an array of structures
which describe segments and other information which the system needs to prepare the program
for execution.

A segment consists of sections, which is the most important aspect of ELF from the programmer’s
point of view.

Each executable or shared object file generally contains a section table, which is an array of
structure describing the sections inside the ELF object file. There are several special sections
defined by the ELF documentations which hold program and control information. The following
ones are very useful to programmers.

fini
This section holds executable instructions that contribute to the process termination code.
That is, when a program exits normally, the system arranges to execute the code in this
section.

.init
This section holds executable instructions that contribute to the process initialization code.
That is, when a program starts to run the system arranges to execute the code in this section
before the main program entry point (called main in C programs).

The .init and .fini sections have a special purpose. If a function is placed in the .init section, the
system will execute it before the main function. Also the functions placed in the .fini section will
be executed by the system after the main function returns. This feature is utilized by compilers
to implement global constructors and destructors in C++.

When an ELF executable is executed, the system will load in all the shared object files before
transferring control to the executable. With the properly constructed .init and .fini sections,
constructors and destructors will be called in the right order.

3.1 Global Constructors and Destructors in C++

Global constructors and destructors in C++ have to be handled very carefully to meet the language
specification. Constructors have to be called before the main function. Destructors have to be
executed after it returns. Under ELF, this can be treated gracefully by the compiler. For example,
the GNU C/C++ compiler, gcc, provides two auxiliary start up files called crtbegin.o and crtend.o,
in addition to two normal auxiliary files crti.o and crtn.o. Together with the .ctors and .dtors
sections described below, the C++ global constructors and destructors can be executed in the
proper order with minimal run-time overhead.

.ctors
This section holds an array of the global constructor function pointers of a program.

.dtors
This section holds an array of the global destructor function pointers of a program.

crtbegin.o
There are four sections:

e The .ctors section. It has a local symbol, __CTOR_LIST__, which is the head of the
global constructor function pointer array. This array in crtbegin.o only has one dummy
element.

-

e The .dtors section. It has a local symbol, __DTOR_LIST__, which is the head of the
global destructor function pointer array. This array in crtbegin.o only has only one
dummy element.

-

e The .text section. It contains only one function, __do_global_dtors_aux, which goes
through __DTOR_LIST__ from the head and calls each destructor function on the list.

e The .fini section. It contains only a call to __do_global_dtors_aux. Please remember
it has just a function call without return since the .fini section in crtbegin.o is part
of the body of a function.

crtend.o
There are also four sections:

e The .ctors section. It has a local symbol, __CTOR_END__, which is the label for the tail
of the global constructor function pointer array.
e The .dtors section. It has a local symbol, __DTOR_END

of the global destructor function pointer array.

-

which is the label for the tail

-

e The .text section. It contains only one function, __do_global_ctors_aux, which goes
through __CTOR_LIST__ from the tail and calls each constructor function on the list.

e The .init section. It contains only a function call to __do_global_ctors_aux. Please
remember it has just a function call without return since the .init section in crtend.o
is part of the body of a function.

crti.o
It has only a function label _init in the .init section and a function label _fini in the .fini
section.

crtn.o
It has only a return instruction each in the .init and .fini sections.

At compile time while generating the relocatable files, gcc puts each global constructor on __CTOR_LIST__
by putting a pointer to the constructor function in the .ctors section. It also puts each global
destructor on __DTOR_LIST__ by putting a pointer to the destructor function in the .dtors section.

At link time, the gcc driver places crtbegin.o immediately before all the relocatable files and
crtend.o immediately after all the relocatable files. In addition, crti.o was placed before crtbe-
gin.o and crtn.o was placed after crtend.o.

While generating the executable file, the link editor, 1d, concatenates the .ctors sections and
the .dtors sections from all the relocatable files to form __CTOR_LIST__ and __DTOR_LIST__,

respectively. The .init sections from all the relocatable files form the _init function and the
fini sections form the _fini function.

At run time, the system will execute the _init function before the main function and execute
the _fini function after the main function returns.

4 Dynamic Linking and Dynamic Loading in ELF

4.1 Dynamic Linking

When one uses a C compiler under a Unix system to generate an executable from the C source
code, the C compiler driver will usually invoke a C preprocessor, compiler, assembler and link
editor in that order to translate the C language code into the executable file.

e The C compiler driver will first pass the C source code into a C preprocessor which outputs
the pure C language code with the processed macros and directives,

e The C compiler translates the resultant C language code into machine-dependent assembly
language code.

e The assembler translates the resultant assembly language code into the machine instructions
of the target machine. The resultant machine instructions are stored in an object file in a
specific binary format. In our case, the object files use the ELF binary format.

e In the last stage, the link editor links all the object files together with the start up codes
and library functions which are referenced in the program. There are two kinds of libraries
one can use:

— A static library is a collection of object files which contain library routines and data. It
is built in such a way that the link editor will incorporate a copy of only those object
files that hold the functions and data referenced in the program into the executable at
link time.

— A shared library is a shared object file that contains functions and data. It is built in
such a way that the link editor will only store in the executable the name of the shared

library and information about the symbols referenced by the executable. At run time
the dynamic linker, a.k.a. the program interpreter in ELF, will map the shared library
into the virtual address space of the process image of the executable and resolve by
name the symbols in the shared library used by the executable. That is process is also
called dynamic linking.

There is nothing special which needs to be done by the programmer to take advantage of shared
libraries with dynamic linking. Everything is transparent to programmers as well as to users.

4.2 Dynamic Loading

Dynamic loading is the process in which one can attach a shared library to the address space of
the process during execution, look up the address of a function in the library, call that function
and then detach the shared library when it is no longer needed. It is implemented as an interface
to the services of the dynamic linker.

Under ELF, the programming interface is usually defined in <d1fcn.h>. These are:

void *dlopen (const char * filename, int flag);

const char * dlerror (void);

const void * dlsym (void handle*, const char * symbol);
int dlclose (void * handle);

These functions are contained in libdl.so. Here is an example of how dynamic loading works.

We have a main program which loads in the shared library dynamically at the run time. One can
specify which shared library to use and which function to call. One can also access the data in
the shared library.

cat dltest.c

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <dlfcn.h>
#include <ctype.h>

typedef void (*func_t) (const char x);

void

dltest (const char *s)

{
printf ("From dltest: ");
for (; *s; s++)

{

putchar (toupper (*s));
}
putchar (°\n’);
}

main (int argc, char **argv)
{

void *handle;

func_t fptr;

char *libname = "libfoo.so";

char **name = NULL;

char *funcname = "foo";

char *param = "Dynamic Loading Test";
int ch;

int mode = RTLD_LAZY;

while ((ch = getopt (argc, argv, "a:b:f:1:")) != EOF)
{
switch (ch)
{
case ’a’: /* argument. */
param = optarg;
break;

case ’b’: /* how to bind. */
switch (*optarg)
{
case ’1’: /x lazy */
mode = RTLD_LAZY;
break;

case ’n’: /* now */
mode = RTLD_NOW;
break;

}

break;

case ’1’: /* which shared library. */
libname = optarg;
break;

case ’f’: /* which function? */
funcname = optarg;

}

}

handle = dlopen (libname, mode);

if (handle == NULL)

{
fprintf (stderr, "%s: dlopen: ‘%s’\n", libname, dlerror ());
exit (1);

}

fptr = (func_t) dlsym (handle, funcname);

if (fptr == NULL)

{
fprintf (stderr, "V/s: dlsym: ‘%s’\n", funcname, dlerror ());
exit (1);

}

name = (char **) dlsym (handle, "libname");

if (name == NULL)

{
fprintf (stderr, "Vs: dlsym: ‘libname’\n", dlerror ());
exit (1);

}

printf ("Call ‘Ys’ in ‘%s’:\n", funcname, *name);

/* call that function with ‘param’ */
(xfptr) (param) ;

dlclose (handle);
return O;

3

There are two shared libraries here, libfoo.so and libbar.so. Each has the same global string
variable, libname, but their own functions, foo and bar, respectively. They are both available to
the program via dlsym.

cat libbar.c

#include <stdio.h>

extern void dltest (const char *);
const char *const libname = "libbar.so";

void bar (const char *s)

{

dltest ("called from libbar.");
printf ("libbar: %s\n", s);
}

cat libfoo.c

#include <stdio.h>

extern void dltest (const char *s);
const char *const libname = "libfoo.so";

void
foo (const char *s)
{

const char *saved = s;

dltest ("called from libfoo");
printf ("libfoo: ");
for (5 *s; s++);
for (s--; s >= saved; s--)
{
putchar (*s);
}
putchar (°\n’);
}

Makefile is used to build the shared libraries and the main program since libbar.so and libfoo.so
call the function dltest in the main program.

cat Makefile [llpt]article

ELF: From The Programmer’s Perspective Hongjiu Lu
hjl@Gnynexst.com

NYNEX Science & Technology, Inc.

500 Westchester Avenue

White Plains, NY 10604, USA

Abstract

In this paper, we discuss the new ELF binary format for Linux specifically from
the view of the programmer. We introduce some techniques which can be used with
ELF to control the execution of a program at run time. We show how to use dynamic
linking and dynamic loading under ELF. We also demonstrate how to use the GNU
C/C++ compiler and binary utilities to create shared C/C++ libraries under Linux.

5 Introduction

The Executable and Linking Format (ELF) is a binary format originally developed and
published by UNIX System Laboratories (USL). It is the default binary format for the
executable files used by SVR4 and Solaris 2.x. ELF is more powerful and flexible than
the a.out and COFF binary formats. Combined with appropriate tools, programmers
can use ELF to control the flow of execution at run time.

6 ELF Types

There are three main types for ELF files.

e An ezecutable file contains code and data suitable for execution. It specifies the
memory layout of the process.

e A relocatable file contains code and data suitable for linking with other relocatable
and shared object files.

o A shared object file (a.k.a. shared library) contains code and data suitable for the
link editor 1d at link time and the dynamic linker at run time. The dynamic linker
may be called 1d.so.1, libc.so.1 or ld-linux.so.1, depending on the implemen-
tation.

The most useful part of ELF lies in its section structure. With the right tools and
techniques, programmers can manipulate the execution of executables with great flex-
ibility.

7 The .init and .fini Sections

On an ELF system, a program consists of one executable file and zero or more shared
object files. To execute such a program, the system uses those files to create a process
image in memory. A process image has segments which contain executable instructions,
data and so on. For an ELF file to be loaded into memory, it has to have a program
header which is an array of structures which describe segments and other information
which the system needs to prepare the program for execution.

A segment consists of sections, which is the most important aspect of ELF from the
programmer’s point of view.

Each executable or shared object file generally contains a section table, which is an
array of structure describing the sections inside the ELF object file. There are several
special sections defined by the ELF documentations which hold program and control
information. The following ones are very useful to programmers.

fini
This section holds executable instructions that contribute to the process termi-

nation code. That is, when a program exits normally, the system arranges to
execute the code in this section.

.init
This section holds executable instructions that contribute to the process initializa-
tion code. That is, when a program starts to run the system arranges to execute
the code in this section before the main program entry point (called main in C
programs).

The .init and .fini sections have a special purpose. If a function is placed in the .init
section, the system will execute it before the main function. Also the functions placed
in the .fini section will be executed by the system after the main function returns.
This feature is utilized by compilers to implement global constructors and destructors
in C++.

When an ELF executable is executed, the system will load in all the shared object files
before transferring control to the executable. With the properly constructed .init and
fini sections, constructors and destructors will be called in the right order.

7.1 Global Constructors and Destructors in C++

Global constructors and destructors in C++ have to be handled very carefully to meet
the language specification. Constructors have to be called before the main function.
Destructors have to be executed after it returns. Under ELF, this can be treated
gracefully by the compiler. For example, the GNU C/C++ compiler, gcc, provides two
auxiliary start up files called crtbegin.o and crtend.o, in addition to two normal aux-
iliary files crti.o and crin.o. Together with the .ctors and .dtors sections described
below, the C++ global constructors and destructors can be executed in the proper order
with minimal run-time overhead.

.ctors
This section holds an array of the global constructor function pointers of a pro-
gram.
.dtors
This section holds an array of the global destructor function pointers of a program.
crtbegin.o
There are four sections:

e The .ctors section. It has a local symbol, __CTOR_LIST__, which is the head
of the global constructor function pointer array. This array in crtbegin.o only
has one dummy element.

-

e The .dtors section. It has a local symbol, __DTOR_LIST__, which is the head
of the global destructor function pointer array. This array in crtbegin.o only
has only one dummy element.

-

e The .text section. It contains only one function, __do_global_dtors_aux,
which goes through __DTOR_LIST__ from the head and calls each destructor

10

function on the list.

e The .fini section. It contains only a call to __do_global_dtors_aux. Please
remember it has just a function call without return since the .fini section in
crtbegin.o is part of the body of a function.

crtend.o
There are also four sections:

e The .ctors section. It has a local symbol, __CTOR_END__, which is the label

for the tail of the global constructor function pointer array.

e The .dtors section. It has a local symbol, __DTOR_END__, which is the label
for the tail of the global destructor function pointer array.

-

——

e The .text section. It contains only one function, __do_global_ctors_aux,
which goes through __CTOR_LIST__ from the tail and calls each constructor
function on the list.

e The .init section. It contains only a function call to __do_global_ctors_aux.
Please remember it has just a function call without return since the .init
section in crtend.o is part of the body of a function.

crti.o
It has only a function label _init in the .init section and a function label _fini
in the .fini section.

crtn.o
It has only a return instruction each in the .init and .fini sections.

At compile time while generating the relocatable files, gcc puts each global constructor
on __CTOR_LIST__ by putting a pointer to the constructor function in the .ctors
section. It also puts each global destructor on __DTOR_LIST__ by putting a pointer to
the destructor function in the .dtors section.

At link time, the gcc driver places crtbegin.o immediately before all the relocatable
files and crtend.o immediately after all the relocatable files. In addition, crti.o was
placed before crtbegin.o and crtn.o was placed after crtend.o.

While generating the executable file, the link editor, 1d, concatenates the .ctors sec-
tions and the .dtors sections from all the relocatable files to form __CTOR_LIST__ and
__DTOR_LIST__, respectively. The .init sections from all the relocatable files form the
_init function and the .fini sections form the _fini function.

At run time, the system will execute the _init function before the main function and
execute the _fini function after the main function returns.

11

8 Dynamic Linking and Dynamic Loading in ELF

8.1 Dynamic Linking

When one uses a C compiler under a Unix system to generate an executable from the
C source code, the C compiler driver will usually invoke a C preprocessor, compiler,
assembler and link editor in that order to translate the C language code into the
executable file.

e The C compiler driver will first pass the C source code into a C preprocessor which
outputs the pure C language code with the processed macros and directives,

e The C compiler translates the resultant C language code into machine-dependent
assembly language code.

e The assembler translates the resultant assembly language code into the machine
instructions of the target machine. The resultant machine instructions are stored
in an object file in a specific binary format. In our case, the object files use the
ELF binary format.

e In the last stage, the link editor links all the object files together with the start
up codes and library functions which are referenced in the program. There are
two kinds of libraries one can use:

— A static library is a collection of object files which contain library routines
and data. It is built in such a way that the link editor will incorporate a copy
of only those object files that hold the functions and data referenced in the
program into the executable at link time.

— A shared library is a shared object file that contains functions and data. It is
built in such a way that the link editor will only store in the executable the
name of the shared library and information about the symbols referenced by
the executable. At run time the dynamic linker, a.k.a. the program interpreter
in ELF, will map the shared library into the virtual address space of the
process image of the executable and resolve by name the symbols in the
shared library used by the executable. That is process is also called dynamic
linking.

There is nothing special which needs to be done by the programmer to take advantage
of shared libraries with dynamic linking. Everything is transparent to programmers
as well as to users.

8.2 Dynamic Loading

Dynamic loading is the process in which one can attach a shared library to the address
space of the process during execution, look up the address of a function in the library,
call that function and then detach the shared library when it is no longer needed. It
is implemented as an interface to the services of the dynamic linker.

12

Under ELF, the programming interface is usually defined in <d1fcn.h>. These are:

void *dlopen (const char * filename, int flag);

const char * dlerror (void);

const void * dlsym (void handle*, const char * symbol);
int dlclose (void * handle);

These functions are contained in libdl.so. Here is an example of how dynamic loading
works.

We have a main program which loads in the shared library dynamically at the run
time. One can specify which shared library to use and which function to call. One can
also access the data in the shared library.

cat dltest.c

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <dlfcn.h>
#include <ctype.h>

typedef void (*func_t) (const char *);

void
dltest (const char *s)
{
printf ("From dltest: ");
for (; *s; s++)
{
putchar (toupper (*s));
}
putchar (°\n’);
}

main (int argc, char **argv)

{
void *handle;
func_t fptr;

char *libname = "libfoo.so";

char **name = NULL;

char *funcname = "foo";

char *param = "Dynamic Loading Test";
int ch;

int mode = RTLD_LAZY;

13

while ((ch = getopt (argc, argv, "a:b:f:1:")) != EOF)
{
switch (ch)
{
case ’a’: /* argument. */
param = optarg;
break;

case ’b’: /* how to bind. */
switch (*optarg)
{
case ’1’: /x lazy */
mode = RTLD_LAZY;
break;

case ’'n’: /* now */
mode = RTLD_NOW;
break;

}

break;

case ’1’: /* which shared library. */
libname = optarg;
break;

case ’f’: /* which function? */
funcname = optarg;
}
b

handle = dlopen (libname, mode);

if (handle == NULL)

{
fprintf (stderr, "Vs: dlopen: ‘%s’\n", libname, dlerror ());
exit (1);

}

fptr = (func_t) dlsym (handle, funcname);

if (fptr == NULL)

{
fprintf (stderr, "V/s: dlsym: ‘%s’\n", funcname, dlerror ());
exit (1);

}

14

name = (char **) dlsym (handle, "libname");

if (name == NULL)

{
fprintf (stderr, "Vs: dlsym: ‘libname’\n", dlerror ());
exit (1);

}

printf ("Call ‘Ys’ in ‘%s’:\n", funcname, *name);

/* call that function with ‘param’ */
(xfptr) (param) ;

dlclose (handle);
return O;

3

There are two shared libraries here, libfoo.so and libbar.so. Each has the same global
string variable, libname, but their own functions, foo and bar, respectively. They are
both available to the program via disym.

cat libbar.c

#include <stdio.h>

extern void dltest (const char *);
const char *const libname = "libbar.so";

void bar (const char *s)

{
dltest ("called from libbar.");
printf ("libbar: %s\n", s);

}

cat libfoo.c

#include <stdio.h>

extern void dltest (const char *s);
const char *const libname = "libfoo.so";

void
foo (const char *s)
{

const char *saved = s;

dltest ("called from libfoo");

15

