
Chapter 1

iBCS2 under Linux

1.1 Introduction

Early in the development of Linux there were discussions about what the
future had in store, and people speculated as to the degree of success that
they each thought Linux would ultimately achieve. A common point which
was raised again and again was that many of the commercial applications
that are used on other platforms either had no “free” equivalents, or had
equivalents that were not polished to a commercial quality. Some said
that until these packages were available for Linux that Linux itself would
just be more of a curiosity of the Internet than a viable platform for the
masses. This led to the obvious question as to exactly what would be
required in order to run such applications directly under Linux. Most of
the commercial applications that are available on the market today come
for one of two different platforms; one is Microsoft Windows, and the other
is commercial variants of Unix such as SCO Unix or SVr4. Being able
to run Windows binaries under Linux is of course the heart of the Wine
project, and is discussed elsewhere in this book. In this chapter we will be
discussing the work that was done to make it possible to run both SCO
and SVr4 binaries under Linux. While the primary focus has been on SCO
and SVr4 binaries, it is also possible to run binaries from vanilla SVr3, ISC,
Wyse V/386 and Xenix V/386 systems as well - all of these are in effect
SVr3 types of systems with different extended capabilities beyond a base
SVr3 system.

1

2 CHAPTER 1. IBCS2 UNDER LINUX

1.2 Standards

Commercial variants of Unix have over the years have undergone standard-
ization and the result is that there are a number of sets of specifications
which define the interfaces and data structures that are used. The version
of Unix that is known as SCO is basically a version of SVr3 with a num-
ber of SCO specific extensions. SVr4 maintains backwards compatibility
with SVr3, but defines new standards which must be adhered to. For our
purposes the standards document that we are interested in is the one for
which SVr3 is the reference implementation, and this standard is known as
the “Intel Binary Compatibility Specification 2”, or known as “iBCS2” for
short[?]. The iBCS2 standard itself is based upon a merging of the older
“System V Interface Definition, Issue 2” (SVID)1, and POSIX.

The iBCS2 standard itself was somewhat imperfect from the start, and
with time the cracks have grown to the point where they are now much more
obvious. It was originally intended to provide complete binary compatibility
between different versions of Unix, but it failed to specify the formats of
some of the system files. It did not contain specifications for symbolic links,
and it specified only 16 bit inode and device numbers. Also, it specified
a scheme of fixed address libraries whereby each entry point was assigned
an absolute address in virtual memory. The libc s shared library was
designed with a jump table so that it was possible to make changes and
fix bugs without breaking old binaries, but in the libraries for libnsl and
libX11 there were no provisions made for jump tables.

Different vendors took different approaches to extending iBCS2 to suit
their needs. SCO used one set of numbers for syscalls related to symbolic
links, but when AT&T released SVr4 they used a different set. SCO uses
a socket based networking whereas SVr3 supported networking based upon
Transport Layer Interface (TLI) and streams, but SVr4 supports both TLI
and socket based interfaces. Finally, early versions of shared libraries under
SVr3/SCO were considered to be buggy, so many software vendors selling
applications chose to distribute binaries that are staticly linked instead of
linked to shared libraries.

The iBCS2 standard specifies the interface between the application and
the kernel to achieve binary compatibility. In other words, it specifies a
standard set of syscalls and the arguments that they take. With SVr4,
things are different - here the specification interface is the interface between
the application and the shared library. The interface between the shared
library and the kernel is unspecified, and while it works well to also use the
iBCS2 specifications at the library/kernel interface, it is possible however

1SVID Issue 3 describes SVr4.

1.3. KERNEL INTERNALS 3

to use a completely different interface at this level2. In ELF/SVr4 libraries
each entry point has an address that is assigned at runtime instead of having
fixed virtual a address, and a dynamic linker is supplied which performs
the final linking between the applications and the libraries. This greatly
simplified the procedures for generating shared libraries, and made it much
easier to fix bugs without breaking the binaries themselves, and makes ELF
libraries very popular with programmers and vendors.

1.3 Kernel Internals

The iBCS2 emulator itself is just a portion of the kernel, and it consists of
several portions. The first are the binary loaders, and there are currently
three of them to load ELF, COFF and x.out(386) format binaries. The
loaders have the responsibility of calling mmap as required to map the bi-
nary into the user’s address space, and in addition they must set up the
arguments on the stack in a manner compatible with the respective bina-
ries. In the case of ELF binaries, we look for a program interpreter (i.e. the
dynamic linker), and act accordingly if we find reference to it. Finally the
binary loaders try and figure out what host system the binary is designed
for. The reason is that there are “personality” differences must be taken
into account as the binary runs in order for the binary to run properly.
The binary personality is used to allow for extensions beyond the iBCS2
specification for:

• Different syscall numbers for some syscall functions.

• Different numerical values used for errors (and returned in errno).

• Different numbers assigned to some signals.

• Different numbers assigned to the symbolic constants used in the
socket() syscall.

• Emulate different behaviors of some syscalls. For example, some fla-
vors of Unix do not modify the timeout parameter in the select()
syscall, and this must be emulated for some applications to work cor-
rectly.

Once an iBCS2 binary has begun to execute, the second part of the
emulator is used to emulate the actual syscalls. Under linux, syscalls are
made through a software interrupt with the “int 0x80” instruction where

2The earliest implementation of SVr4 binary support under Linux had the dynamic
linker simply use functions directly from the linux libc.

4 CHAPTER 1. IBCS2 UNDER LINUX

the arguments are left in machine registers. The iBCS2 standard requires
that you instead use the “lcall 7,0” instruction3 where the arguments
are left on the stack. Linux itself can trap this instruction, of course, and
call the iBCS2 emulator.

The emulator itself looks up the number of the syscall that the applica-
tion is attempting to call, and then uses the “personality” of the process to
decide what function we really need to call. In many cases, we can directly
call an existing Linux kernel function, but in other cases the iBCS2 code
needs to do something special, either to provide a translation of some of the
arguments, or to provide a new functionality. Once the function returns,
we check the error code and set the machine registers in the manner spec-
ified in the iBCS2 standard for returning error conditions after using the
personality dependent translation tables for the value of errno.

There are also some subsystems that are also emulated. This includes
System V IPC, the /dev/socksys socket interface which is used by the
Lachman streams based networking (and appears in SCO Unix), Wyse
V/386 socket interface and a /dev/spx streams device that can be used
to make connections to the local X server. Finally, some Linux-specific
extensions are available, such as allowing all iBCS2 binaries to use the
socket() based networking that the Wyse variant of SVr3 implements.

1.4 Shared libraries

In order to provide a complete runtime environment, it is also necessary
to provide shared libraries for those applications that require them. The
linkage and loading of shared libraries for SCO/SVr3 and SVr4 is completely
different, so different tools are required to create the libraries, but many
of the functions in the shared libraries are essentially the same, so it is
possible to use the same source tree for shared libraries for both SVr3 and
SVr4 binaries. In many cases, it was possible to simply copy functions
from the regular linux libc and recompile them using the header files for
iBCS2. In other cases, such as stdio, existing implementations were not
close enough to the iBCS2 standard to be of any use, and in these cases
brand new code needed to be written.4.

3This instruction is in a sense nothing more than a “far” call as used with DOS, except
that we are in 32 bit protected mode and the segment registers cannot be arbitrarily set.
A segment selector value of 7 is set up to be a “call gate” which allows a task running
at the lowest level of privilege to call a section of code at a higher level of privilege such
as the kernel.[?]

4The source tree for the shared libraries can be found on tsx-11.mit.edu in
/pub/linux/ALPHA/ibcs2, and all sites that mirror this directory.

1.4. SHARED LIBRARIES 5

1.4.1 SCO/SVr3 shared libraries

The linux version of the libc s shared library for SCO/SVr3 is nearly done
as of this writing. Nearly all of the source code is written, and the tools are
available to generate the actual libc shared library. The main difficulty at
the moment is that there are undocumented internal functions which need
to be added to stdio, and these are now being added. Until this version
is ready you can simply copy the shared library from an SCO box if your
license allows this.

The iBCS2 standard also defines an interface for libnsl, which contains
the network services library. This library uses a streams based through
what is known as the TLI. Linux does not currently support a streams based
approach, so for the time being all binaries that require TLI and/or streams
will not run. There is interest in eventually adding support for streams/TLI
to the linux networking code, and once this happens, so direct support of
TLI by the iBCS2 emulator will be possible. The lack of TLI/streams
turns out to not be a serious limitation because SCO Unix to use a socket
based approach to networking that is accessed through a few special devices
in /dev. Since linux directly supports sockets, SCO binaries that require
access to the network should run without any difficulty.

SVr3/SCO binaries that require either the libnsl or the libX11 shared
library will probably never run, and the reason for this is that the entry
points of these shared libraries were apparently chosen by simply linking the
libraries and extracting the addresses of the individual functions (in other
words, it appears as if someone forgot to add the jump table). This makes
it virtually impossible to even provide simple bug fixes to these libraries as
the slightest change could move the virtual address of the entry points. As
a result of this, many vendors who supply X-Windows applications simply
choose to use static linking, which should work fine under Linux with the
iBCS2 emulator.

1.4.2 SVr4 shared libraries

The shared libraries for SVr4 contain a libc.so.1, a ld.so.1 (a bare
dynamic linker for Solaris applications), and skeletal versions of libnsl.so
and libsocket.so. As was the case with SVr3 binaries, there is no kernel
support yet for TLI networking, and until this is the case some networking
binaries will fail to run. The skeletal version of libsocket.so contains
definitions of functions used with sockets, and these call the kernel directly
(using the Wyse TCP/IP entry points), thus bypassing the need for any
TLI code.

As was alluded to earlier, the linkage between the application and the

6 CHAPTER 1. IBCS2 UNDER LINUX

shared library with SVr4/ELF libraries is handled at runtime. Initially
the program loader passes control to the dynamic linker, and the dynamic
linker goes through the list of relocations that the linker generated, and in
effect performs a final linking so that the binary can run. The advantage
of this approach is that you do not need to pre-register address spaces for
libraries, and the shared libraries themselves can be loaded anywhere in
virtual memory5. This does mean that there is a startup latency whenever
you run a binary, however it is possible to minimize this by means of “lazy
symbol binding” where we skip the relocations to the jump table and then
pass control to the application. The jump table entries themselves are
initialized by the linker in such a way that they all point to the dynamic
linker - thus when you attempt to call these functions the proper address
can be looked up and inserted back into the jump table.

Not all of the functions that appear in the SVr4 version of libc.so.1
are present in the linux iBCS2 version. If the application calls a function
that is not present, the dynamic linker will print an error message with the
name of the missing function and then exit. It is possible to get a complete
list of the unimplemented functions called by a given application by using
the “ldd -r” command. The dynamic linker in the linux iBCS2 version of
libc.so.1 supports the same environment variables to control it’s behavior
that the SVr4 version of libc.so.1 does:

• LD BIND NOW - Disable “lazy symbol binding”, and bind all sym-
bols before the application receives control.

• LD LIBRARY PATH - A list of the paths which we should search for
the libraries.

• LD TRACE LOADED OBJECTS - Used by “ldd”, if you set this you
get a list of the shared libraries that are required by an application.

• LD WARN - Used by “ldd”, if you set this, you get a list of all of
the symbols that are required by the application that are not de-
fined in any of the shared libraries. Note that the LD BIND NOW
environment variable influences the results of this.

It should also be mentioned that wherever possible, the linux iBCS2
libc.so.1 shared library is compatible with the SVr4 shared library to a
degree that some binaries will actually run under SVr4 using the linux ver-
sion. This compatibility is not present in the libnsl.so and libsocket.so

5This also means that they must be compiled as position independent. On some
architectures there is a slight performance penalty for position independence. It is hard
to quantify, but for the i386 architecture it is probably around 5%.

1.5. NATIVE COMPILATION OF IBCS2 PROGRAMS 7

shared libraries because these libraries make special syscalls to open and
use sockets which are not available under SVr4.

Applications that use X-Windows will require access to one or more
shared libraries that contain X-Windows code. Fortunately it is possible to
obtain pre compiled shared libraries for SVr4 from binary distributions of
XFree86. A list of the ftp sites which carry these distributions should be
available in the same location as the libc s library sources.

1.5 Native compilation of iBCS2 programs

1.5.1 SCO/SVr3 native compilation

It is possible to compile iBCS2 compliant COFF binaries under linux be-
cause it is possible to configure GCC, GAS and the GNU linker for COFF.
Pre-compiled binaries for many of these tools may be available in the same
locations as the libc s source tree. This capability has not been thor-
oughly tested, but all the utilities that you should need should be present.
The crt0.o files can be generated from sources in the libc s source dis-
tribution.

1.5.2 SVr4 native compilation

The situation with ELF is somewhat different. The latest public releases of
the GNU assembler and GNU linker do not support position independent
code (PIC) or ELF shared libraries. This means that all ELF binaries (and
even the linux versions of the ELF shared libraries) must be compiled and
linked on a SVr4 machine. This is only a temporary situation as patches
for binutils currently exist which provide most of the required functionality.
These patches are being added to the development source tree maintained
at cygnus.com, and should appear in the next public release.

There has been serious discussion about changing the native binary for-
mat for Linux from a.out to ELF. There are several advantages of this - first
of all, the current linux shared libraries can be a bit cumbersome to gen-
erate, which places an additional burden upon the library developer. ELF
shared libraries can be generated quite easily, almost as easily as linking a
normal application. Also, other machine architectures have requirements
that are much more easily met by ELF than by a.out. The major obstacle
that has prevented such a switch are the missing functionalities in GAS
and the GNU linker described above. In the event of a switch in native
binary format, it is likely that native linux binaries will continue to use
the int 0x80 syscall interface, and that native linux binaries would not

8 CHAPTER 1. IBCS2 UNDER LINUX

use the iBCS2 emulator. It will thus be necessary to distinguish the ELF
shared libraries used by the iBCS2 emulator from the ELF shared libraries
used for native application, and this will probably be done by moving the
iBCS2 compatible libraries from /usr/lib to a separate directory. At this
writing, such details have not been decided.

1.6 Installation

Installing the iBCS2 emulator on a linux system is relatively straightforward
matter. To begin with you should start from either a 1.0 or 1.1 kernel
source tree. If you are using anything older than this you may have a
difficult time getting things to work properly6. Next you should obtain the
source tree for the iBCS2 emulator from either tsx-11.mit.edu or any mirror
sites of tsx-11, and can be found in the directory pub/linux/ALPHA/ibcs2.
This distribution should be unpacked into the kernel source tree so that
the files go into /usr/src/linux/ibcs (assuming that your kernel is in
/usr/src/linux).

Depending upon what version of the kernel you are running you may
need to apply some patches to your kernel source tree. Examine the di-
rectory /usr/src/linux/ibcs/Patches to see what specific patches may
be required. In general, there will be one patch-kit that will be required if
you are using a 1.0 kernel, and there may or may not be patches that are
required for 1.1 kernels (1.1 kernel versions at this writing do not require
patches).

For our purposes here, we will assume that you wish to use the iBCS2
emulator as a loadable kernel module instead of having it linked directly
into the kernel. The advantage of using the emulator as a loadable module
is that if you are not using the iBCS2 emulator you can unload it and free
some memory. In addition, if you find that you need to make changes to
the emulator source code, you can unload the old emulator and then load
the new version without rebooting the system. If you wish, you can have
/etc/rc load the module at boot time so that the module will always be
present for you.

If you are using a 1.0 kernel source tree, you will then need to do a
“make config”, followed by a “make dep”. The iBCS support question
in the configuration script is essentially asking you whether you want the
iBCS2 emulator linked directly into the kernel, and if you want a loadable
module you should answer “n”. Once you have done this, you can type
“make” to rebuild both the kernel and the iBCS2 emulator (the emulator

6If you are using the 1.1 source tree, you should try and obtain all of the patches that
are available to maximize your chances of success.

1.7. TRACING 9

itself will appear in the file /usr/src/linux/ibcs/iBCS). Once this is done
you should reboot.

If you are running a 1.1 kernel source tree you can simply go to the
/usr/src/linux/ibcs directory and type “make” to build the module “iBCS”.

Before you actually use the iBCS2 emulator for the first time, you will
need to create a few special device files such as /dev/socksys, /dev/spx,
and /dev/X0R. These are used for TCP/IP in SCO applications and for the
local X interface. See the README file in the iBCS2 emulator source tree for
more specific instructions on how to do this.

Now that you have a kernel compatible with the iBCS2 emulator and you
have the emulator itself, you can use the insmod utility which is supplied
with the modutils package7, and this will actually load the emulator into
the kernel’s address space and perform all required initialization. When
you load the iBCS2 module it is normal for a few messages to be printed
to the screen., a few messages will be printed. You can check the file
/proc/modules to see what loadable modules are currently loaded, and a
rmmod utility is supplied with the modutils package which can be used to
unload the iBCS2 emulator.

Once the emulator is loaded, you can simply run any SCO/SVr3/SVr4
applications in the same way you would run any other application. If you
are running a SVr3/SCO binary that requires a shared library, you will have
to obtain the library image and install it in the directory /shlib on your
system. If you are using a SVr4 type of binary that requires a shared library,
you have some flexibility because you can use the LD LIBRARY PATH
environment variable to specify the location of the shared libraries to be
used. The default location for SVr4 libraries is /usr/lib.8.

1.7 Tracing

The iBCS2 emulator has a built in trace capability, somewhat like the
truss facility under SVr4. This is an invaluable tool that can be used
to help troubleshoot bugs in the emulator, and to help determine why a
given application is not running correctly. There is a small program which
you can run that will turn on and off the assorted tracing features of the
emulator, and this program can be found in the iBCS2 emulator source tree
in the Tools subdirectory.

Run “trace” with no arguments to get a list of capabilities. Full tracing
is enabled using “trace api”. This is extremely verbose - you probably

7This can be found in the directory /pub/linux/sources/sbin/ on tsx-11.mit.edu.
8The default location for iBCS2 ELF shared libraries may change if the default native

binary format for Linux is changed to ELF.

10 CHAPTER 1. IBCS2 UNDER LINUX

want to kill syslogd and use “tail -f” to dump /proc/kmsg directly to a
file as quickly as possible if you enable this.

If you have no intention of ever using the trace facilities (and will never
complain that something doesn’t work) you can remove the IBCS TRACE
option and recompile the emulator without the tracing facilities. This
makes the emulator about a third smaller but ensures that there is no
way for you to find out if program failures are directly due to faults in the
emulator.

1.8 Applications known to work

The list that is presented here is probably incomplete as this information
had to be compiled far in advance of press time, and thus you should
consider this just a sampling of what is possible. For an uptodate list of
the applications that will work, see the file COMPAT that comes with the
iBCS2 emulator source tree.

• WordPerfect 5.1 - The first “big name” application that worked under
the iBCS2 emulator. This works both in character and X modes,
and is staticly linked so that you do not need to obtain any shared
libraries to use it. The WordPerfect Corporation has a demonstration
version that is available via anonymous ftp from ftp.wordperfect.com
in ftp/unix/demos/sco/sco.z, and you can use this to try it out for
free and see how you like it.

• Oracle - this also works, at least to some degree. Here the /shlib/libnsl s
shared library is required, which indicates that some of the network
capabilities of Oracle will not work until TLI/streams support is
present.

• Informix - various programs also have been reported to work. Details
are sketchy at this point.

• CorelDraw - Corel has an SCO version of CorelDraw available, and
to a large degree it works. So far the only version that has been
tested is a demo version that comes on a CDROM, and for some
reason this demo version does not come with the fonts required to
use text labels. It is unclear whether these fonts actually come with
the production version or not - if they do, it is likely that Corel will
work completely. Note that Corel uses a license server, and you need
to have the portmap daemon up and running before you will be able
to run either the demo or a real version.

1.9. OTHER ISSUES - TROUBLESHOOTING 11

1.9 Other issues - troubleshooting

• The keyboard mapping will not be quite for some SCO applications
(especially for function keys). Linux is quite configurable in this re-
gard, so there is an alternate keyboard mapping file that comes with
the iBCS2 emulator that can be loaded and used so as to correctly
map the function keys. You will need the loadkeys utility to make
use of this.

• If you are trying to install WordPerfect, there are some oddities in the
installation scripts which you should be aware of. Please examine the
file PROD.patches/WP in the iBCS2 emulator source tree for more
information.

• Some SCO binaries (notably programs built with Informix 4GL) are
sensitive to problems in /etc/passwd. For Informix to work, you will
need to make sure that each entry in /etc/passwd does not have a
blank specification for the home directory.

• Some versions of X libraries seem to require ’localhost’ to be allowed to
connect to the X server even if we aren’t using a TCP/IP connection.
The X libraries used for VSI*FAX require this, the X libraries used
for WordPerfect don’t. To solve this problem simply allow ’localhost’
to connect to the X server using “xhost localhost”.

• Some Unix installation disks claim to be Unix tar format, but they
appear to be blank. This problem arises because Unix provides two
floppy devices, the normal floppy devices that we all know and love
(and which are listed as the Xenix compatible devices in the man
page) and a second set which skips the first track of the disk. For
some reason a few vendors seem to use this second set when preparing
distribution disks. WordPerfect seem to do this. Linux currently
only supports the normal floppy devices. The work-around is to skip
the first track by hand and read each disk individually. Try “dd
if=/dev/fd0 bs=18k skip=1 | tar xfv -” for a 3.5 high density
disk. Change the 18k to 15k for a 5.25” high density disk.

• Sometimes scripts bomb with an unexpected EOF looking for ’. This
only happens on Linux. This is caused by a simple bug in the script
that is illustrated by the following example:

count=‘ls | wc | awk ’{ printf "%05d", $1 }‘
Note the missing ’ at the end of the awk statement. The /bin/sh sup-
plied with SCO will assume (in this case correctly) that the ’ should

12 CHAPTER 1. IBCS2 UNDER LINUX

have occurred immediately before the closing ‘ and the expression
will succeed. The /bin/sh used with Linux (normally bash) does not
make this assumption and gives an error message.

• Sometimes test will complain that a numeric argument is required
before -eq, -le etc. This comes about because the GNU shellutils test
and the test built in to bash (which are the versions of test used
under Linux) do not accept a null argument as equivalent to 0 so
“test "" -le 5” will give an error. Under SCO a null argument is
taken as equivalent to 0 so the statement would be evaluated as “test
0 -le 5”.

• Some X fonts that are supplied appear to be corrupt. This is probably
because they are snf fonts. The XFree86 X server used with Linux
appears to fail to load some snf fonts silently and displays garbage.
Pcf fonts work ok and should be used where possible. If you only have
the snf fonts all you can do is to try asking the vendor for pcf versions
or the bdf definitions (If you have the bdf definitions (WordPerfect
ships them) then you can build a pcf set using the bdftopcf utility).

• Sometimes line drawing characters do not come out right. This is
because the application is assuming that you have the IBM-PC char-
acter set and is using 8-bit codes instead of escape sequences. The
work-around is to have Linux switch to the PC character set mode
with the escape sequence ESC-(-U. Arrange to have this sequence
sent either before the application is started or as part of the initial-
ization that the application does. You can restore the ISO character
set afterwards with ESC-(-K.

• Some SVr4 binaries use terminfo instead of termcap. Terminfo com-
pilers (tic) are available in a number of places. The ncurses package
contains one version.

• SVr3/SCO binaries that use the stat() syscall to obtain the inode
number of a given file may get the incorrect number. This is because
the st ino field in the stat structure is only 16 bits wide, while under
linux this field is 32 bits wide. The top 16 bits are truncated when
this value is assigned to the 16 bit field.

• Any application that uses TLI networking will probably fail.

• At this writing there are a few problems with ipc. These are being
worked on, and may be resolved shortly.

1.10. COPYRIGHT ISSUES 13

• COFF binaries that are linked with -N will currently not load. If this
gets to be a problem, support will be added.

• If an application dies for any reason, the core dump will be in the
native linux format rather than a format that corresponds to the
image. Ultimately support will be added for ELF so that a core
dump from an ELF image will also be in the ELF format.

• There is currently no support for the mprotect syscall under linux, so
this means that currently all ELF code pages must be writable for the
dynamic linker to work. Patches exist for mprotect, and once these
are integrated into the kernel the ELF binary loader and dynamic
linker will be modified to make use of this function.

1.10 Copyright Issues

One of the most important things from the outset was to make sure that
when writing the iBCS2 emulator and the shared libraries that no copy-
rights be violated. The fact that very few people actually have access to the
actual source code for SVr3, SCO Unix or SVr4 is actually an advantage
here, as any such access would probably disqualify someone from working
on the iBCS2 project. As far as I know, all of the development of the ibcs2
emulator and libraries was done using published standards which describe
many of the things which we needed to know (see Bibliography), man pages,
header files, and by observing how iBCS2 compliant test programs operate
under linux.

1.11 Acknowledgements

The following people contributed to the development of the iBCS2 emulator
and shared libraries. Brandon S. Allbery, Graham Adams, Tor Arnsen,
Philip Balister, Alfred Longyear, Mike Jagdis, Joseph L. Portman III, Drew
Sullivan and Eric Youngdale.

