
Reprinted from the

Proceedings of the
Linux Symposium

Volume Two

July 21th–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Workload Dependent Performance Evaluation of the
Linux 2.6 I/O Schedulers

Steven L. Pratt
IBM

slpratt@us.ibm.com

Dominique A. Heger
IBM

dheger@us.ibm.com

Abstract

The 2.6 release introduced the option to select
a particular I/O scheduler at boot time. The
2.4 Linus elevator was retired, incorporated are
now the anticipatory (AS), the deadline, the
noop, as well as the completely fair queuing
(CFQ) I/O schedulers. Each scheduler has its
strengths and weaknesses. The question is un-
der what workload scenarios does a particular
I/O scheduler excel, as well as what is the per-
formance gain that is possible by utilizing the
available tuning options.

This study quantifies the performance of the 4
I/O schedulers under various workload scenar-
ios (such as mail, web, and file server based
conditions). The hardware is being varied from
a single-CPU single-disk setup to machines
with many CPUs that are utilizing large RAID
arrays. In addition to characterizing the per-
formance behavior and making actual recom-
mendations on which scheduler to utilize un-
der certain workload scenarios, the study looks
into ways to actually improve the performance
through either the existing tuning options or
any potential code changes/enhancements.

Introduction

This study was initiated to quantify I/O perfor-
mance in a Linux 2.6 environment. The I/O
stack in general has become considerably more

complex over the last few years. Contempo-
rary I/O solutions include hardware, firmware,
as well as software support for features such
as request coalescing, adaptive prefetching,
automated invocation of direct I/O, or asyn-
chronous write-behind polices. From a hard-
ware perspective, incorporating large cache
subsystems on a memory, RAID controller, and
physical disk layer allows for a very aggres-
sive utilization of these I/O optimization tech-
niques. The interaction of the different opti-
mization methods that are incorporated in the
different layers of the I/O stack is neither well
understood nor been quantified to an extent
necessary to make a rational statement on I/O
performance. A rather interesting feature of
the Linux operating system is the I/O sched-
uler [6]. Unlike the CPU scheduler, an I/O
scheduler is not a necessary component of any
operating system per se, and therefore is not
an actual building block in some of the com-
mercial UNIX® systems. This study elabo-
rates how the I/O scheduler is embedded into
the Linux I/O framework, and discusses the
4 (rather distinct) implementations and perfor-
mance behaviors of the I/O schedulers that are
available in Linux 2.6. Section 1 introduces
the BIO layer, whereas Section 2 elaborates on
the anticipatory (AS), the deadline, the noop,
as well as the completely fair queuing (CFQ)
I/O schedulers. Section 2 further highlights
some of the performance issues that may sur-
face based on which I/O scheduler is being
utilized. Section 3 discusses some additional

426 • Linux Symposium 2004 • Volume Two

hardware and software components that im-
pact I/O performance. Section 4 introduces the
workload generator used in this study and out-
lines the methodology that was utilized to con-
duct the analysis. Section 5 discusses the re-
sults of the project. Section 6 provides some
additional recommendations and discusses fu-
ture work items.

1 I/O Scheduling and the BIO
Layer

The I/O scheduler in Linux forms the interface
between the generic block layer and the low-
level device drivers [2],[7]. The block layer
provides functions that are utilized by the file
systems and the virtual memory manager to
submit I/O requests to block devices. These
requests are transformed by the I/O sched-
uler and made available to the low-level device
drivers. The device drivers consume the trans-
formed requests and forward them (by using
device specific protocols) to the actual device
controllers that perform the I/O operations. As
prioritized resource management seeks to reg-
ulate the use of a disk subsystem by an applica-
tion, the I/O scheduler is considered an imper-
ative kernel component in the Linux I/O path.
It is further possible to regulate the disk usage
in the kernel layers above and below the I/O
scheduler. Adjusting the I/O pattern generated
by the file system or the virtual memory man-
ager (VMM) is considered as an option. An-
other option is to adjust the way specific de-
vice drivers or device controllers consume and
manipulate the I/O requests.

The various Linux 2.6 I/O schedulers can be
abstracted into a rather generic I/O model.
The I/O requests are generated by the block
layer on behalf of threads that are access-
ing various file systems, threads that are per-
forming raw I/O, or are generated by virtual
memory management (VMM) components of

the kernel such as the kswapd or the pdflush
threads. The producers of I/O requests ini-
tiate a call to__make_request() , which
invokes various I/O scheduler functions such
aselevator_merge_fn() . The enqueue
functions in the I/O framework intend to merge
the newly submitted block I/O unit (a bio in
2.6 or abuffer_head in the older 2.4 ker-
nel) with previously submitted requests, and
to sort (or sometimes just insert) the request
into one or more internal I/O queues. As a
unit, the internal queues form a single logi-
cal queue that is associated with each block
device. At a later stage, the low-level device
driver calls the generic kernel functionelv_
next_request() to obtain the next request
from the logical queue. Theelv_next_
request() call interacts with the I/O sched-
uler’s dequeue functionelevator_next_
req_fn() , and the latter has an opportunity
to select the appropriate request from one of
the internal queues. The device driver pro-
cesses the request by converting the I/O sub-
mission into (potential) scatter-gather lists and
protocol-specific commands that are submitted
to the device controller. From an I/O scheduler
perspective, the block layer is considered as the
producer of I/O requests and the device drivers
are labeled as the actual consumers.

From a generic perspective, every read or write
request launched by an application results in ei-
ther utilizing the respective I/O system calls or
in memory mapping (mmap) the file into a pro-
cess’s address space [14]. I/O operations nor-
mally result in allocating PAGE_SIZE units of
physical memory. These pages are being in-
dexed, as this enables the system to later on
locate the page in the buffer cache [10]. A
cache subsystem only improves performance
if the data in the cache is being reused. Fur-
ther, the read cache abstraction allows the sys-
tem to implement (file system dependent) read-
ahead functionalities, as well as to construct
large contiguous (SCSI) I/O commands that

Linux Symposium 2004 • Volume Two • 427

can be served via a single direct memory access
(DMA) operation. In circumstances where the
cache represents pure (memory bus) overhead,
I/O features such as direct I/O should be ex-
plored (especially in situations where the sys-
tem is CPU bound).

In a general write scenario, the system is not
necessarily concerned with the previous con-
tent of a file, as awrite() operation nor-
mally results in overwriting the contents in the
first place. Therefore, the write cache empha-
sizes other aspects such as asynchronous up-
dates, as well as the possibility of omitting
some write requests in the case where multiple
write() operations into the cache subsystem
result in a single I/O operation to a physical
disk. Such a scenario may occur in an envi-
ronment where updates to the same (or a sim-
ilar) inode offset are being processed within
a rather short time-span. The block layer in
Linux 2.4 is organized around thebuffer_
head data structure [7]. The culprit of that
implementation was that it is a daunting task
to create a truly effective block I/O subsys-
tem if the underlyingbuffer_head struc-
tures force each I/O request to be decomposed
into 4KB chunks. The new representation of
the block I/O layer in Linux 2.6 encourages
large I/O operations. The block I/O layer now
tracks data buffers by using struct page point-
ers. Linux 2.4 systems were prone to loose
sight of the logical form of the writeback cache
when flushing the cache subsystem. Linux 2.6
utilizes logical pages attached to inodes to flush
dirty data, which allows multiple pages that be-
long to the same inode to be coalesced into
a single bio that can be submitted to the I/O
layer [2]. This approach represents a process
that works well if the file is not fragmented on
disk.

2 The 2.6 Deadline I/O Scheduler

The deadline I/O scheduler incorporates a per-
request expiration-based approach and oper-
ates on 5 I/O queues [4]. The basic idea behind
the implementation is to aggressively reorder
requests to improve I/O performance while si-
multaneously ensuring that no I/O request is
being starved. More specifically, the scheduler
introduces the notion of a per-request deadline,
which is used to assign a higher preference to
read than write requests. The scheduler main-
tains 5 I/O queues. During the enqueue phase,
each I/O request gets associated with a dead-
line, and is being inserted in I/O queues that are
either organized by the starting logical block
number (a sorted list) or by the deadline fac-
tor (a FIFO list). The scheduler incorporates
separate sort and FIFO lists for read and write
requests, respectively. The 5th I/O queue con-
tains the requests that are to be handed off to
the device driver. During a dequeue operation,
in the case where the dispatch queue is empty,
requests are moved from one of the 4 (sort or
FIFO) I/O lists in batches. The next step con-
sists of passing the head request on the dispatch
queue to the device driver (this scenario also
holds true in the case that the dispatch-queue is
not empty). The logic behind moving the I/O
requests from either the sort or the FIFO lists
is based on the scheduler’s goal to ensure that
each read request is processed by its effective
deadline, without starving the queued-up write
requests. In this design, the goal of economiz-
ing the disk seek time is accomplished by mov-
ing a larger batch of requests from the sort list
(logical block number sorted), and balancing
it with a controlled number of requests from
the FIFO list. Hence, the ramification is that
the deadline I/O scheduler effectively empha-
sizes average read request response time over
disk utilization and total average I/O request
response time.

To reiterate, the basic idea behind the deadline

428 • Linux Symposium 2004 • Volume Two

scheduler is that all read requests are satisfied
within a specified time period. On the other
hand, write requests do not have any specific
deadlines associated with them. As the block
device driver is ready to launch another disk
I/O request, the core algorithm of the dead-
line scheduler is invoked. In a simplified form,
the fist action being taken is to identify if there
are I/O requests waiting in the dispatch queue,
and if yes, there is no additional decision to
be made what to execute next. Otherwise it is
necessary to move a new set of I/O requests to
the dispatch queue. The scheduler searches for
work in the following places, BUT will only
migrate requests from the first source that re-
sults in a hit. (1) If there are pending write I/O
requests, and the scheduler has not selected any
write requests for a certain amount of time, a
set of write requests is selected (see tunables
in Appendix A). (2) If there are expired read
requests in theread_fifo list, the system
will move a set of these requests to the dis-
patch queue. (3) If there are pending read re-
quests in the sort list, the system will migrate
some of these requests to the dispatch queue.
(4) As a last resource, if there are any pend-
ing write I/O operations, the dispatch queue is
being populated with requests from the sorted
write list. In general, the definition of a cer-
tain amount of time for write request starva-
tion is normally 2 iterations of the scheduler
algorithm (see Appendix A). After two sets of
read requests have been moved to the dispatch
queue, the scheduler will migrate some write
requests to the dispatch queue. A set or batch
of requests can be (as an example) 64 contigu-
ous requests, but a request that requires a disk
seek operation counts the same as 16 contigu-
ous requests.

2.1 The 2.6 Anticipatory I/O scheduler

The anticipatory (AS) I/O scheduler’s design
attempts to reduce the per thread read response

time. It introduces a controlled delay compo-
nent into the dispatching equation [5],[9],[11].
The delay is being invoked on any new read
request to the device driver, thereby allowing
a thread that just finished its read I/O request
to submit a new read request, basically en-
hancing the chances (based on locality) that
this scheduling behavior will result in smaller
seek operations. The tradeoff between reduced
seeks and decreased disk utilization (due to
the additional delay factor in dispatching a re-
quest) is managed by utilizing an actual cost-
benefit analysis [9].

The next few paragraphs discuss the general
design of an anticipatory I/O scheduler, outlin-
ing the different components that comprise the
I/O framework. Basically, as a read I/O request
completes, the I/O framework stalls for a brief
amount of time, awaiting additional requests
to arrive, before dispatching a new request to
the disk subsystem. The focus of this design
is on applications threads that rapidly gener-
ate another I/O request that could potentially be
serviced before the scheduler chooses another
task, and by doing so, deceptive idleness may
be avoided [9]. Deceptive idleness is defined as
a condition that forces the scheduler into mak-
ing a decision too early, basically by assuming
that the thread issuing the last request has mo-
mentarily no further disk request lined up, and
hence the scheduler selects an I/O request from
another task. The design discussed here argues
that the fact that the disk remains idle during
the short stall period is not necessarily detri-
mental to I/O performance. The question of
whether (and for how long) to wait at any given
decision point is key to the effectiveness and
performance of the implementation. In prac-
tice, the framework waits for the shortest pos-
sible period of time for which the scheduler ex-
pects (with a high probability) the benefits of
actively waiting to outweigh the costs of keep-
ing the disk subsystem in an idle state. An as-
sessment of the costs and benefits is only pos-

Linux Symposium 2004 • Volume Two • 429

sible relative to a particular scheduling policy
[11]. To elaborate, a seek reducing scheduler
may wish to wait for contiguous or proximal
requests, whereas a proportional-share sched-
uler may prefer weighted fairness as one of its
primary criteria. To allow for such a high de-
gree of flexibility, while trying to minimize the
burden on the development efforts for any par-
ticular disk scheduler, the anticipatory schedul-
ing framework consists of 3 components [9].
(1) The original disk scheduler, which imple-
ments the scheduling policy and is unaware of
any anticipatory scheduling techniques. (2) An
actual scheduler independent anticipation core.
(3) An adaptive scheduler-specific anticipation
heuristic for seek reducing (such as SPTF or C-
SCAN) as well as any potential proportional-
share (CFQ or YFQ) scheduler. The antici-
pation core implements the generic logic and
timing mechanisms for waiting, and relies on
the anticipation heuristic to decide if and for
how long to wait. The actual heuristic is im-
plemented separately for each disk scheduler,
and has access to the internal state of the sched-
uler. To apply anticipatory scheduling to a new
scheduling policy, it is merely necessary to im-
plement an appropriate anticipation heuristic.

Any traditional work-conserving I/O sched-
uler operates in two states (known as idle and
busy). Applications may issue I/O requests
at any time, and these requests are normally
being placed into the scheduler’s pool of re-
quests. If the disk subsystem is idle at this
point, or whenever another request completes,
a new request is being scheduled, the sched-
uler’s select function is called, whereupon a re-
quest is chosen from the pool and dispatched
to the disk device driver. The anticipation core
forms a wrapper around this traditional sched-
uler scheme. Whenever the disk becomes idle,
it invokes the scheduler to select a candidate re-
quest (still basically following the same philos-
ophy as always). However, instead of dequeu-
ing and dispatching a request immediately, the

framework first passes the request to the an-
ticipation heuristic for evaluation. A return
value (result) of zero indicates that the heuris-
tic has deemed it pointless to wait and the core
therefore proceeds to dispatch the candidate
request. However, a positive integer as a re-
turn value represents the waiting period in mi-
croseconds that the heuristic deems suitable.
The core initiates a timeout for that particu-
lar time period, and basically enters a new wait
state. Though the disk is inactive, this state is
considered different from idling (while having
pending requests and an active timeout). If the
timeout expires before the arrival of any new
request, the previously chosen request is dis-
patched without any further delay. However,
new requests may arrive during the wait pe-
riod and these requests are added to the pool of
I/O requests. The anticipation core then imme-
diately requests the scheduler to select a new
candidate request from the pool, and initiates
communication with the heuristic to evaluate
this new candidate. This scenario may lead to
an immediate dispatch of the new candidate re-
quest, or it may cause the core to remain in the
wait state, depending on the scheduler’s selec-
tion and the anticipation heuristic’s evaluation.
In the latter case, the original timeout remains
in effect, thus preventing unbounded waiting
situations by repeatedly re-triggering the time-
out.

As the heuristic being used is disk scheduler
dependent, the discussion here only general-
izes on the actual implementation techniques
that may be utilized. Therefore, the next few
paragraphs discuss a shortest positioning time
first (SPTF) based implementation, where the
disk scheduler determines the positioning time
for each available request based on the cur-
rent head position, and basically chooses the
request that results into the shortest seek dis-
tance. In general, the heuristic has to evalu-
ate the candidate request that was chosen by
the scheduling policy. The intuition is that if

430 • Linux Symposium 2004 • Volume Two

the candidate I/O request is located close to the
current head position, there is no need to wait
on any other requests. Assuming synchronous
I/O requests initiated by a single thread, the
task that issued the last request is likely to sub-
mit the next request soon, and if this request is
expected to be close to the current request, the
heuristic decides to wait for this request [11].
The waiting period is chosen as the expected
YZ percentile (normally around 95%) think-
time, within which there is a XZ probability
(again normally 95%) that a request will ar-
rive. This simple approach is transformed and
generalized into a succinct cost-benefit equa-
tion that is intended to cover the entire range
of values for the head positioning, as well as
the think-times. To simplify the discussion, the
adaptive component of the heuristic consists of
collecting online statistics on all the disk re-
quests to estimate the different time variables
that are being used in the decision making pro-
cess. The expected positioning time for each
process represents a weighted-average over the
time of the positing time for requests from that
process (as measured upon request comple-
tion). Expected median and percentile think-
times are estimated by maintaining a decayed
frequency table of request think-times for each
process.

The Linux 2.6 implementation of the anticipa-
tory I/O scheduler follows the basic idea that if
the disk drive just operated on a read request,
the assumption can be made that there is an-
other read request in the pipeline, and hence it
is worth while to wait [5]. As discussed, the
I/O scheduler starts a timer, and at this point
there are no more I/O requests passed down
to the device driver. If a (close) read request
arrives during the wait time, it is serviced im-
mediately and in the process, the actual dis-
tance that the kernel considers as close grows
as time passes (the adaptive part of the heuris-
tic). Eventually the close requests will dry out
and the scheduler will decide to submit some

of the write requests (see Appendix A).

2.2 The 2.6 CFQ Scheduler

The Completely Fair Queuing (CFQ) I/O
scheduler can be considered to represent an
extension to the better known Stochastic Fair
Queuing (SFQ) implementation [12]. The fo-
cus of both implementations is on the concept
of fair allocation of I/O bandwidth among all
the initiators of I/O requests. An SFQ-based
scheduler design was initially proposed (and
ultimately being implemented) for some net-
work scheduling related subsystems. The goal
to accomplish is to distribute the available I/O
bandwidth as equally as possible among the
I/O requests. The implementation utilizes n
(normally 64) internal I/O queues, as well as
a single I/O dispatch queue. During an en-
queue operation, the PID of the currently run-
ning process (the actual I/O request producer)
is utilized to select one of the internal queues
(normally hash based) and hence, the request
is basically inserted into one of the queues (in
FIFO order). During dequeue, the SFQ design
calls for a round robin based scan through the
non-empty I/O queues, and basically selects re-
quests from the head of the queues. To avoid
encountering too many seek operations, an en-
tire round of requests is collected, sorted, and
ultimately merged into the dispatch queue. In
a next step, the head request in the dispatch
queue is passed to the device driver. Concep-
tually, a CFQ implementation does not utilize
a hash function. Therefore, each I/O process
gets an internal queue assigned (which implies
that the number of I/O processes determines
the number of internal queues). In Linux 2.6.5,
the CFQ I/O scheduler utilizes a hash func-
tion (and a certain amount of request queues)
and therefore resembles an SFQ implementa-
tion. The CFQ, as well as the SFQ implemen-
tations strives to manage per-process I/O band-
width, and provide fairness at the level of pro-

Linux Symposium 2004 • Volume Two • 431

cess granularity.

2.3 The 2.6 noop I/O scheduler

The Linux 2.6 noop I/O scheduler can be
considered as a rather minimal overhead I/O
scheduler that performs and provides basic
merging and sorting functionalities. The main
usage of the noop scheduler revolves around
non disk-based block devices (such as mem-
ory devices), as well as specialized software or
hardware environments that incorporate their
own I/O scheduling and (large) caching func-
tionality, and therefore require only minimal
assistance from the kernel. Therefore, in large
I/O subsystems that incorporate RAID con-
trollers and a vast number of contemporary
physical disk drives (TCQ drives), the noop
scheduler has the potential to outperform the
other 3 I/O schedulers as the workload in-
creases.

2.4 I/O Scheduler—Performance Implications

The next few paragraphs augment on the I/O
scheduler discussion, and introduce some addi-
tional performance issues that have to be taken
into consideration while conducting an I/O per-
formance analysis. The current AS implemen-
tation consists of several different heuristics
and policies that basically determine when and
how I/O requests are dispatched to the I/O con-
troller(s). The elevator algorithm that is being
utilized in AS is similar to the one used for
the deadline scheduler. The main difference
is that the AS implementation allows limited
backward movements (in other words supports
backward seek operations) [1]. A backward
seek operation may occur while choosing be-
tween two I/O requests, where one request is
located behind the elevator’s current head po-
sition while the other request is ahead of the
elevator’s current position.

The AS scheduler utilizes the lowest logical

block information as the yardstick for sorting,
as well as determining the seek distance. In the
case that the seek distance to the request behind
the elevator is less than half the seek distance to
the request in front of the elevator, the request
behind the elevator is chosen. The backward
seek operations are limited to a maximum of
MAXBACK (1024 * 1024) blocks. This ap-
proach favors the forward movement progress
of the elevator, while still allowing short back-
ward seek operations. The expiration time for
the requests held on the FIFO lists is tune-
able via the parameter’sread_expire and
write_expire (see Appendix A). When a
read or a write operation expires, the AS I/O
scheduler will interrupt either the current ele-
vator sweep or the read anticipation process to
service the expired request(s).

2.5 Read and Write Request Batches

An actual I/O batch is described as a set of
read or write requests. The AS scheduler alter-
nates between dispatching either read or write
batches to the device driver. In a read sce-
nario, the scheduler submits read requests to
the device driver, as long as there are read
requests to be submitted, and the read batch
time limit (read_batch_expire) has not
been exceeded. The clock onread_batch_
expire only starts in the case that there are
write requests pending. In a write scenario, the
scheduler submits write requests to the device
driver as long as there are pending write re-
quests, and the write batch time limitwrite_
batch_expire has not been exceeded. The
heuristic used insures that the length of the
write batches will gradually be shortened if
there are read batches that frequently exceed
their time limit.

When switching between read and write re-
quests, the scheduler waits until all the re-
quests from the previous batch are completed
before scheduling any new requests. The read

432 • Linux Symposium 2004 • Volume Two

and write FIFO expiration time is only being
checked when scheduling I/O for a batch of
the corresponding (read or write) operation.
To illustrate, the read FIFO timeout values are
only analyzed while operating on read batches.
Along the same lines, the write FIFO timeout
values are only consulted while operating on
write batches. Based on the used heuristics and
policies, it is generally not recommended to set
the read batch time to a higher value than the
write expiration time, or to set the write batch
time to a greater value than the read expiration
time. As the IO scheduler switches from a read
to a write batch, the I/O framework launches
the elevator with the head request on the write
expired FIFO list. Likewise, when switching
from a write to a read batch, the I/O sched-
uler starts the elevator with the first entry on
the read expired FIFO list.

2.6 Read Anticipation Heuristic

The process of read anticipation solely occurs
when scheduling a batch of read requests. The
AS implementation only allows one read re-
quest at a time to be dispatched to the con-
troller. This has to be compared to either
the many write request scenario or the many
read request case if read anticipation is deacti-
vated. In the case that read anticipation is en-
abled (antic_expire = 0), read requests
are dispatched to the (disk or RAID) controller
one at a time. At the end of each read request,
the I/O scheduler examines the next read re-
quest from the sorted read list (an actual rb-
tree) [1]. If the next read request belongs to
the same process as the request that just com-
pleted, or if the next request in the queue is
close (data block wise) to the just completed
request, the request is being dispatched im-
mediately. Otherwise, the statistics (average
think-time and seek distance) available for the
process that just completed are being exam-
ined (cost-benefit analysis). The statistics are

associated with each process, but these statis-
tics are not associated with a specific I/O de-
vice per se. To illustrate, the approach works
more efficiently if there is a one-to-one corre-
lation between a process and a disk. In the case
that a process is actively working I/O requests
on separate devices, the actual statistics reflect
a combination of the I/O behavior across all
the devices, skewing the statistics and therefore
distorting the facts. If the AS scheduler guesses
right, very expensive seek operations can be
omitted, and hence the overall I/O through-
put will benefit tremendously. In the case that
the AS scheduler guesses wrong, theantic_
expire time is wasted. In an environment
that consists of larger (HW striped) RAID sys-
tems and tag command queuing (TCQ) capable
disk drives, it is more beneficial to dispatch an
entire batch of read requests and let the con-
trollers and disk do their magic.

From a physical disk perspective, to locate
specific data, the disk drive’s logic requires
the cylinder, the head, and the sector infor-
mation [17]. The cylinder specifies the track
on which the data resides. Based on the lay-
ering technique used, the tracks underneath
each other form a cylinder. The head infor-
mation identifies the specific read/write head
(and therefore the exact platter). The search
is now narrowed down to a single track on a
single platter. Ultimately, the sector value re-
flects the sector on the track, and the search
is completed. Contemporary disk subsys-
tems do not communicate in terms of cylin-
ders, heads and sectors. Instead, modern disk
drives map a unique block number over each
cylinder/head/sector construct. Therefore, that
(unique) reference number identifies a specific
cylinder/head/sector combination. Operating
systems address the disk drives by utilizing
these block numbers (logical block address-
ing), and hence the disk drive is responsible for
translating the block number into the appropri-
ate cylinder/head/sector value. The culprit is

Linux Symposium 2004 • Volume Two • 433

that it is not guaranteed that the physical map-
ping is actually sequential. But the statement
can be made that there is a rather high probabil-
ity that a logical blockn is physically adjacent
to a logical blockn+1. The existence of the
discussed sequential layout is paramount to the
I/O scheduler performing as advertised. Based
on how the read anticipatory heuristic is imple-
mented in AS, I/O environments that consist of
RAID systems (operating in a hardware stripe
setup) may experience a rather erratic perfor-
mance behavior. This is due to the current
AS implementation that is based on the notion
that an I/O device has only one physical (seek)
head, ignoring the fact that in a RAID environ-
ment, each physical disk has its own physical
seek head construct. As this is not recognized
by the AS scheduler, the data being used for
the statistics analysis is skewed. Further, disk
drives that support TCQ perform best when
being able to operate onn (and not 1) pend-
ing I/O requests. The read anticipatory heuris-
tic basically disables TCQ. Therefore, envi-
ronments that support TCQ and/or consist of
RAID systems may benefit from either choos-
ing an alternate I/O scheduler or from setting
theantic_expire parameter to 0. The tun-
ing allows the AS scheduler to behave similarly
to the deadline I/O scheduler (the emphasis is
on behave and not performance).

3 I/O Components that Affect Per-
formance

In any computer system, between the disk
drives and the actual memory subsystem is
a hierarchy of additional controllers, host
adapters, bus converters, and data paths that all
impact I/O performance in one way or another
[17]. Linux file systems submit I/O requests by
utilizing submit_bio() . This function sub-
mits requests by utilizing the request function
as specified during queue creation. Techni-
cally, device drivers do not have to use the I/O

scheduler, however all SCSI devices in Linux
utilize the scheduler by virtue of the SCSI
mid-layer [1]. Thescsi_alloc_queue()
function callsblk_init_queue() , which
sets the request function toscsi_request_
fn() . Thescsi_request_fn() function
takes requests from the I/O scheduler (on de-
queue), and passes them down to the device
driver.

3.1 SCSI Operations

In the case of a simple SCSI disk access, the
request has to be processed by the server, the
SCSI host adapter, the embedded disk con-
troller, and ultimately by the disk mechanism
itself. As the OS receives the I/O request,
it converts the request into a SCSI command
packet. In the case of a synchronous request,
the calling thread surrenders the CPU and tran-
sitions into a sleep state until the I/O operation
is completed. In a next step, the SCSI com-
mand is transferred across the server’s I/O bus
to the SCSI host adapter. The host adapter is
responsible for interacting with the target con-
troller and the respective devices. In a first step,
the host adapter selects the target by asserting
its control line onto the SCSI-bus (as the bus
becomes available). This phase is known as
the SCSI selection period. As soon as the tar-
get responds to the selection process, the host
adapter transfers the SCSI command to the tar-
get. This section of the I/O process is labeled
as the command phase. If the target is capa-
ble of processing the command immediately, it
either returns the requested data or the status
information.

In most circumstances, the request can only be
processed immediately if the data is available
in the target controller’s cache. In the case of
a read() request, the data is normally not
available. This results into the target discon-
necting from the SCSI bus to allow other SCSI
operations to be processed. If the I/O opera-

434 • Linux Symposium 2004 • Volume Two

tion consists of awrite() request, the data
phase is followed immediately by a command
phase on the bus, as the data is transferred into
the target’s cache. At that stage, the target dis-
connects from the bus. After disconnecting
from the bus, the target resumes its own pro-
cessing while the bus can be utilized by other
SCSI requests. After the physical I/O opera-
tion is completed on the target disk, the target
controller competes again for the bus, and re-
connects as soon as the bus is available. The
reconnect phase is followed by a data phase (in
the case ofread() operation) where the data
is actually being moved. The data phase is fol-
lowed by another status phase to describe the
results of the I/O operation. As soon as the
SCSI host adapter receives the status update,
it verifies the proper completion of the request
and notifies the OS to interrupt the requesting
worker thread. Overall, the simple SCSI I/O
request causes 7 phase changes consisting of a
select, a command, a disconnect, a reconnect,
a data, a status, and a disconnect operation.
Each phase consumes time and contributes to
the overall I/O processing latency on the sys-
tem.

3.2 SCSI Disk Fence

When discussing SCSI disks, it is imperative
to understand the performance impact of a rel-
atively obscure disk control parameter that is
labeled as the fence. When a SCSI disk recog-
nizes a significant delay (such as a seek oper-
ation) in aread() request, the disk will sur-
render the bus. At the point where the disk is
ready to transfer the data, the drive will again
contend for the bus so that theread() request
can be completed. The fence parameter deter-
mines the time at which the disk will begin to
contend for the SCSI bus. If the fence is set to
0 (the minimum), the disk will contend for the
SCSI bus after the first sector has been trans-
ferred into the disk controller’s memory. In the

case where the fence is set to 255 (the maxi-
mum), the disk will wait until almost all the re-
quested data has been accumulated in the con-
troller’s memory before contending for the bus.

The performance implication of setting the
fence to a low value is a reduced response
time, but results in a data transfer that hap-
pens basically at disk speed. On the other
hand, a high fence value will delay the start
of the data transfer, but results in a data trans-
fer that occurs at near burst speed. Therefore,
in systems with multiple disks per adapter, a
high fence value potentially increases overall
throughput for I/O intensive workloads. A
study by Shriver [15] observed fairness in ser-
vicing sufficiently large I/O requests (in the
16KB to 128KB range), despite the fact that
the SCSI disks have different priorities when
contending for the bus. Although each pro-
cess attempts to progress through its requests
without any coordination with other processes,
a convoy behavior among all the processes was
observed. Namely, all disk drives received a
request and transmitted the data back to the
host adapter before any disk received another
request from the adapter (a behavior labeled
as rounds). The study revealed that the host
adapter does not arbitrate for the bus, despite
having the highest priority, as long as any disk
is arbitrating.

3.3 Zone Bit Recording (ZBR)

Contemporary disk drives utilize a technology
called Zone Bit Recording to increase capacity
[17]. Incorporating the technology, cylinders
are grouped into zones, based on their distance
from the center of the disk. Each zone is as-
signed a number of sectors per track. The outer
zones contain more sectors per track compared
to the inner zones that are located closer to the
spindle. With ZBR disks, the actual data trans-
fer rate varies depending on the physical sector
location.

Linux Symposium 2004 • Volume Two • 435

24

26

28

30

32

34

36

38

40

42

Read Performance ZBR Disk

Zones

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Note:
Figure 1 depicts the average throughput per

zone, the benchmark revealed 14 distinct
performance steps.

Figure 1: ZBR Throughput Performance

Given the fact that a disk drive spins at a con-
stant rate, the outer zones that contain more
sectors will transfer data at a higher rate than
the inner zones that contain fewer sectors. In
this study, evaluating I/O performance on an
18.4 GB Seagate ST318417W disk drive out-
lined the throughput degradation for sequen-
tial read() operations based on physical sec-
tor location. The ZCAV program used in this
experiment is part of the Bonnie++ bench-
mark suite. Figure 1 outlines the average zone
read() throughput performance. It has to be
pointed out that the performance degradation is
not gradual, as the benchmark results revealed
14 clear distinct performance steps along the
throughput curve. Another observation derived
from the experiment was that for this particu-
lar ZBR disk, the outer zones revealed to be
wider than the inner zones. The Seagate speci-
fications for this particular disk cite an internal
transfer rate of 28.1 to 50.7 MB/second. The
measured minimum and maximum through-
put read() values of 25.99 MB/second and
40.84 MB/second, respectively are approxi-
mately 8.1% and 19.5% (13.8% on average)
lower, and represent actual throughput rates.
Benchmarks conducted on 4 other ZBR drives

revealed a similar picture. On average, the ac-
tual system throughput rates were 13% to 15%
lower than what was cited in the vendor specifi-
cations. Based on the conducted research, this
text proposes a first-order ZBR approximation
nominal disk transfer rate model (for a partic-
ular request sizereq and a disk capacitycap)
that is defined in Equation 1 as:

ntrzbr
(req) = 0.85 trmax()⋅

req trmax trmin−()⋅

cap
− 1()

trmax
= maximum disk specific internal transfer speed

trmin
= minimum disk specific internal transfer speed

The suggested throughput regulation factor of
0.85 was derived from the earlier observation
that throughput rates adjusted for factors such
as sector overhead, error correction, or track
and cylinder skewing issues resulted in a drop
of approximately 15% compared to the man-
ufacturer reported transfer rates. This study
argues that the manufacturer reported transfer
rates could be more accurately defined as in-
stantaneous bit rates at the read-write heads.
It has to be emphasized that the calculated
throughput rates derived from the presented
model will have to be adjusted onto the target
system’s ability to sustain the I/O rate.

The theories of progressive chaos imply that
anything that evolves out of a perfect order
will over time become disordered due to out-
side forces. The progressive chaos concept can
certainly be applied to I/O performance. The
dynamic allocation (as well as de-allocation)
of file system resources contributes to the pro-
gressive chaos scenario encountered in virtu-
ally any file system designs. Form a device
driver and physical disk drive perspective, the
results of disk access optimization strategies

436 • Linux Symposium 2004 • Volume Two

are first, that the number of transactions per
second is maximized and second, that the or-
der in which the requests are being received is
not necessarily the order the requests are get-
ting processed. Thus, the response time of any
particular request can not be guaranteed. A
request queue may increase spatial locality by
selecting requests in an order to minimize the
physical arm movement (a workload transfor-
mation), but may also increase the perceived
response time because of queuing delays (a be-
havior transformation). The argument made in
this study is that the interrelationship of some
the discussed I/O components has to be taken
into consideration while evaluating and quanti-
fying performance

4 I/O Schedulers and Performance

The main goal of this study was to quantify
I/O performance (focusing on the Linux 2.6
I/O schedulers) under varying workload sce-
narios and hardware configurations. Therefore,
the benchmarks were conducted on a single-
CPU single-disk system, a midrange 8-way
NUMA RAID-5 system, and a 16-way SMP
system that utilized a 28-disk RAID-0 config-
uration. The reader is referred to Appendix
B for a more detailed description of the dif-
ferent benchmark environments. As a work-
load generator, the study utilized the flexible
file system benchmark (FFSB) infrastructure
[8]. FFSB represents a benchmarking envi-
ronment that allows analyzing I/O performance
by simulating basically any I/O pattern imag-
inable. The benchmarks can be executed on
multiple individual file systems, utilizing an
adjustable number of worker threads, where
each thread may either operate out of a com-
bined or a thread-based I/O profile. Aging the
file systems, as well as collecting systems uti-
lization and throughput statistics is part of the
benchmarking framework. Next to the more
traditional sequential read and sequential write

benchmarks, the study used a filer server, a web
server, a mail server, as well as a metadata in-
tensive I/O profile (see Appendix B). The file,
as well as the mail server workloads (the actual
transaction mix) was based on Intel’s Iome-
ter benchmark [18], whereas the mail server
transaction mix was loosely derived from the
SPECmail2001 I/O profile [19]. The I/O anal-
ysis in this study was composed of two distinct
focal points. One emphasis of the study was
on aggregate I/O performance achieved across
the 4 benchmarked workload profiles, whereas
a second emphasis was on the sequential read
and write performance behavior. The emphasis
on aggregate performance across the 4 distinct
workload profiles is based on the claim made
that an I/O scheduler has to provide adequate
performance in a variety of workload scenar-
ios and hardware configurations, respectively.
All the conducted benchmarks were executed
with the default tuning values (if not specified
otherwise) in an ext3 as well as an xfs file sys-
tem environment. In this paper, the term re-
sponse time represents the total run time of the
actual FFSB benchmark, incorporating all the
I/O operations that are executed by the worker
threads.

5 Single-CPU Single-Disk Setup

The normalized results across the 4 workload
profiles revealed that the deadline, the noop, as
well as the CFQ schedulers performed within
2% and 1% percent on ext3 and xfs (see Fig-
ure 2). On ext3, the CFQ scheduler had a slight
advantage, whereas on xfs the deadline sched-
uler provided the best aggregate (normalized)
response time. On both file systems, the AS
scheduler represented the least efficient solu-
tion, trailing the other I/O schedulers by 4.6%
and 13% on ext3 and xfs, respectively. Not
surprisingly, among the 4 workloads bench-
marked in a single disk system, AS trailed the
other 3 I/O schedulers by a rather significant

Linux Symposium 2004 • Volume Two • 437

margin in the Web Server scenario (which re-
flects 100% random read operations). On se-
quential read operations, the AS scheduler out-
performed the other 3 implementations by an
average of 130% and 127% on ext3 and xfs.
The sequential read results clearly support the
discussion in this paper on where the design fo-
cus for AS was directed. In the case of sequen-
tial write operations, AS revealed the most effi-
cient solution on ext3, whereas the noop sched-
uler provided the best throughput on xfs. The
performance delta (for the sequential write sce-
narios) among the I/O schedulers was 8% on
ext3 and 2% on xfs (see Appendix C).

A
S

D
ea

dl
in

e

N
oo

p

C
FQ

380

390

400

410

420

430

440

450

460

Ext3

XFS

Single Disk Single CPU

Note: In
Figure 2, the x-axis depicts the I/O schedulers.
The front row reflects the ext3 setup, whereas
the back row shows xfs. The y-axis discloses

the aggregate (normalized) response time over
the 4 benchmarked profiles per I/O scheduler.

Figure 2: Aggregate Response Time (Normal-
ized)

5.1 8-Way RAID-5 Setup

In the RAID-5 environment, the normalized re-
sponse time values (across the 4 profiles) dis-
closed that the deadline scheduler provided the
most efficient solution on ext3 as well as xfs
(see Figure 3 and Figure 4). While executing in
an ext3 environment, all 4 I/O schedulers were
within 4.5%, with the AS I/O scheduler trail-
ing noop and CFQ by approximately 2.5%. On

xfs, the study clearly disclosed a profound AS
I/O inefficiency while executing the metadata
benchmark. The delta among the schedulers
on xfs was much larger than on ext3, as the
CFQ, noop, and AS implementations trailed
the deadline scheduler by 1%, 6%, and 145%,
respectively (see Appendix C). As in the single
disk setup, the AS scheduler provided the most
efficient sequential read performance. The gap
between AS and the other 3 implementations
shrunk though rather significantly compared to
the single disk scenarios. The average sequen-
tial read throughput (for the other 3 schedulers)
was approximately 20% less on both ext3 and
xfs, respectively. The sequential write perfor-
mance was dominated by the CFQ scheduler’s
response time that outperformed the other 3 so-
lutions. The delta between the most (CFQ)
and the least efficient implementation was 22%
(AS) and 15% (noop) on ext3 and xfs, respec-
tively (see Appendix C).

A
S

N
oo

p

D
ea

dl
in

e

C
FQ

350

370

390

410

430

450

470

490

NonTuned

Tuned

RAID5 Ext3

Note: In Figure 3, the x-axis depicts the I/O
schedulers. The front-row reflects the non-
tuned, and the back-row the tuned environ-
ments. The y-axis discloses the normalized re-
sponse time (over the 4 profiles) per I/O sched-
uler.

Figure 3: EXT3 Aggregate Response Time
(Normalized)

In a second phase, all the I/O scheduler setups
were tuned by adjusting the (per block device)

438 • Linux Symposium 2004 • Volume Two

A
S

N
oo

p

D
ea

dl
in

e

C
FQ

380
405

430

455

480

505

530

555

580

605

NonTuned

Tuned

RAID5 XFS

Note: In Figure 4, the x-axis depicts the I/O
schedulers. The front-row reflects the non-
tuned, and the back-row the tuned environ-
ments. The y-axis discloses the normalized re-
sponse time (over the 4 profiles) per I/O sched-
uler.

Figure 4: XFS Aggregate Response Time
(Normalized)

tunablenr_requests (I/O operations in fly)
from its default value of 128 to 2,560. The re-
sults revealed that the CFQ scheduler reacted
in a rather positive way to the adjustment, and
ergo was capable to provide on ext3 as well
as on xfs the most efficient solution. The tun-
ing resulted into decreasing the response time
for CFQ in all the conducted (workload profile
based) benchmarks on both file systems (see
Appendix C). While CFQ benefited from the
tuning, the results for the other 3 implemen-
tations were inconclusive. Based on the pro-
file, the tuning either resulted in a gain or a
loss in performance. As CFQ is designed to
operate on larger sets of I/O requests, the re-
sults basically reflect the design goals of the
scheduler [1]. This is in contrast to the AS im-
plementation, where by design, any read inten-
sive workload can not directly benefit from the
change. On the other hand, in the case sequen-
tial write operations are being executed, AS
was capable of taking advantage of the tuning

as the response time decreased by 7% and 8%
on ext3 and xfs, respectively. The conducted
benchmarks revealed another significant inef-
ficiency behavior in the I/O subsystem, as the
write performance (for all the schedulers) on
ext3 was significantly lower (by a factor of ap-
proximately 2.1) than on xfs. The culprit here
is the ext3 reservation code. Ext3 patches to
resolve the issue are available from kernel.org.

5.2 16-Way RAID-0 Setup

Utilizing the 28 disk RAID-0 configuration
as the benchmark environment revealed that
across the 4 workload profiles, the deadline
implementation was able to outperform the
other 3 schedulers (see Appendix C). It has to
be pointed out though that the CFQ, as well
as the noop scheduler, slightly outperformed
the deadline implementation in 3 out of the 4
benchmarks. Overall, the deadline scheduler
gained a substantial lead processing the Web
server profile (100% random read requests),
outperforming the other 3 implementations by
up to 62%. On ext3, the noop scheduler re-
flected the most efficient solution while op-
erating on sequential read and write requests,
whereas on xfs, CFQ and deadline dominated
the sequential read and write benchmarks. The
performance delta among the schedulers (for
the 4 profiles) was much more noticeable on
xfs (38%) than on ext3 (6%), which reflects a
similar behavior as encountered on the RAID-
5 setup. Increasing nr_requests to 2,560 on the
RAID-0 system led to inconclusive results (for
all the I/O schedulers) on ext3 as well as xfs.
The erratic behavior encountered in the tuned,
large RAID-0 environment is currently being
investigated.

5.3 AS Sequential Read Performance

To further illustrate and basically back up the
claim made in Section 2 that the AS scheduler

Linux Symposium 2004 • Volume Two • 439

design views the I/O subsystem based on a no-
tion that an I/O device has only one physical
(seek) head, this study analyzed the sequen-
tial read performance in different hardware se-
tups. The results were being compared to the
CFQ scheduler. In the single disk setup, the
AS implementation is capable of approaching
the capacity of the hardware, and therefore pro-
vides optimal throughput performance. Under
the same workload conditions, the CFQ sched-
uler substantially hampers throughput perfor-
mance, and does not allow the system to fully
utilize the capacity of the I/O subsystem. The
described behavior holds true for the ext3 as
well as the xfs file system. Hence, the state-
ment can be made that in the case of sequen-
tial read operations and CFQ, the I/O sched-
uler (and not the file system per se) reflects the
actual I/O bottleneck. This picture is being re-
versed as the capacity of the I/O subsystem is
being increased.

HW Setup AS CFQ

1 Disk 52 MB/sec 23 MB/sec
RAID-5 46 MB/sec 39 MB/sec
RAID-0 31 MB/sec 158 MB/sec

Table 1: AS vs. CFQ Sequential Read Perfor-
mance

As depicted in Table 1, the CFQ scheduler ap-
proaches first, the throughput of the AS imple-
mentation in the benchmarked RAID-5 envi-
ronment and second, is capable of approaching
the capacity of the hardware in the large RAID-
0 setup. In the RAID-0 environment, the AS
scheduler only approaches approximately 17%
of the hardware capacity (180 MB/sec). To re-
iterate, the discussed I/O behavior is reflected
in the ext3 as well as the xfs benchmark results.
From any file system perspective, performance
should not degrade if the size of the file system,
the number of files stored in the file system,
or the size of the individual files stored in the
file system increases. Further, the performance

of a file system is supposed to approach the
capacity of the hardware (workload dependent
of course). This study clearly outlines that in
the discussed workload scenario, the 2 bench-
marked file systems are capable of achieving
these goals, but only in the case the I/O sched-
ulers are exchanged depending on the physical
hardware setup. The fact that the read-ahead
code in Linux 2.6 has to operate as efficiently
as possible (in conjunction with the I/O sched-
uler and the file system) has to be considered
here as well.

5.4 AS verses deadline Performance

Based on the benchmarked profiles and hard-
ware setups, the AS scheduler provided in
most circumstances the least efficient I/O so-
lution. As the AS framework represents
an extension to the deadline implementation,
this study explored the possibility of tun-
ing AS to approach deadline behavior. The
tuning consisted of settingnr_requests
to 2,560, antic_expire to 0, read_
batch_expire to 1,000, read_expire
to 500, write_batch_expire to 250,
and write_expire to 5,000. Setting the
antic_expire value to 0 (by design) ba-
sically disables the anticipatory portion of the
scheduler. The benchmarks were executed uti-
lizing the RAID-5 environment, and the re-
sults were compared to the deadline perfor-
mance results reported this study. On ext3,
the non-tuned AS version trailed the non-tuned
deadline setup by approximately 4.5% (across
the 4 profiles). Tuning the AS scheduler re-
sulted into a substantial performance boost, as
the benchmark results revealed that the tuned
AS implementation outperformed the default
deadline setup by approximately 6.5% (see Ap-
pendix C). The performance advantage was
squandered though while comparing the tuned
AS solution against the deadline environment
with nr_requests set to 2,560. Across

440 • Linux Symposium 2004 • Volume Two

the 4 workload profiles, deadline again out-
performed the AS implementation by approxi-
mately 17%. As anticipated, settingantic_
expire to 0 resulted into lower sequential
read performance, stabilizing the response time
at deadline performance (see Appendix C). On
xfs, the results were (based on the rather er-
ratic metadata performance behavior of AS)
inconclusive. One of the conclusions is that
based on the current implementation of the AS
code that collects the statistical data, the im-
plemented heuristic is not flexible enough to
detect any prolonged random I/O behavior, a
scenario where it would be necessary to deac-
tivate the active wait behavior. Further, setting
antic_expire to 0 should force the sched-
uler into deadline behavior, a claim that is not
backed up by the empirical data collected for
this study. One explanation for the discrep-
ancy is that the short backward seek operations
supported in AS are not part of the deadline
framework. Therefore, depending on the actual
physical disk scheduling policy, the AS back-
ward seek operations may be counterproduc-
tive from a performance perspective.

5.5 CFQ Performance

The benchmarks conducted revealed that the
tuned CFQ setup provided the most efficient
solution for the RAID-5 environment (see Sec-
tion 5.1). Therefore, the study further explored
varies ways to improve the performance of the
CFQ framework. The CFQ I/O scheduler in
Linux 2.6.5 resembles a SFQ implementation,
which operates on a certain number or inter-
nal I/O queues and hashes on a per process
granularity to determine where to place an I/O
request. More specifically, the CFQ sched-
uler in 2.6.5 hashes on the thread group id
(tgid), which represents the process PID as in
POSIX.1 [1]. The approach chosen was to al-
ter the CFQ code to hash on the Linux PID.
This code change introduces fairness on a per

thread (instead of per process) granularity, and
therefore alters the distribution of the I/O re-
quests in the internal queues. In addition, the
cfq_quantum and cfq_queued parame-
ters of the CFQ framework were exported into
user space.

In a first step, the default tgid based CFQ ver-
sion with cfq_quantum set to 32 (default
equals to 8) was compared to the PID based
implementation that used the same tuning con-
figuration. Across the 4 profiles, the PID based
implementation reflected the more efficient so-
lution, processing the I/O workloads approxi-
mately 4.5% and 2% faster on ext3 and xfs, re-
spectively. To further quantify the performance
impact of the different hash methods (tgid
verses PID based), in a second step, the study
compared the default Linux 2.6.5 CFQ setup
to the PID based code that was configured
with cfq_quantum adjusted to 32 (see Ap-
pendix C). Across the 4 profiles benchmarked
on ext3, the new CFQ scheduler that hashed on
a PID granularity outperformed the status quo
by approximately 10%. With the new method,
the sequential read and write performance im-
proved by 3% and 4%, respectively. On xfs
(across the 4 profiles), the tgid based CFQ im-
plementation proved to be the more efficient
solution, outperforming the PID based setup
by approximately 9%. On the other hand, the
PID based solution was slightly more efficient
while operating on the sequential read (2%)
and write (1%) profiles. The ramification is
that based on the conducted benchmarks and
file system configurations, certain workload
scenarios can be processed more efficiently in
a tuned, PID hash based configuration setup.

To further substantiate the potential of the pro-
posed PID based hashing approach, a mixed
I/O workload (consisting of 32 concurrent
threads) was benchmarked. The environment
used reflected the RAID-5 setup. The I/O pro-
file was decomposed in 4 subsets of 8 worker

Linux Symposium 2004 • Volume Two • 441

D
ef

au
lt

C
FQ

C
FQ

 &
 P

ID A
S

D
ea

dl
in

e

N
oo

p

260

270

280

290

300

310

320

330

340

XFS

Ext3

RAID5 Mixed Workload

Note: In Figure 5, the x-axis depicts the I/O
schedulers. The front row reflects the xfs,
whereas the back row depicts the ext3 based
environment. The y-axis discloses the actual
response time for the mixed workload profile.

Figure 5: Mixed Workload Behavior

threads, each subset executing either 64KB se-
quential read, 4KB random read, 4KB random
write, or 256KB sequential write operations
(see Figure 5). The benchmark results revealed
that in this mixed I/O scenario, the PID based
CFQ solution (tuned withcfq_quantum =
32) outperformed the other I/O schedulers by
at least 5% and 2% on ext3 and xfs, respec-
tively (see Figure 5 and Appendix C). The
performance delta among the schedulers was
greater on ext3 (15%) than on xfs (6%).

6 Conclusions and Future Work

The benchmarks conducted on varying hard-
ware configurations revealed a strong (setup
based) correlation among the I/O scheduler,
the workload profile, the file system, and ul-
timately I/O performance. The empirical data
disclosed that most tuning efforts resulted in
reshuffling the scheduler performance rank-
ing. The ramification is that the choice of an
I/O scheduler has to be based on the work-

load pattern, the hardware setup, as well as the
file system used. To reemphasize the impor-
tance of the discussed approach, an additional
benchmark was conducted utilizing a Linux 2.6
SMP system, the jfs file system, and a large
RAID-0 configuration, consisting of 84 RAID-
0 systems (5 disks each). The SPECsfs [20]
benchmark was used as the workload genera-
tor. The focus was on determining the high-
est throughput achievable in the RAID-0 setup
by only substituting the I/O scheduler between
SPECsfs runs. The results revealed that the
noop scheduler was able to outperform the
CFQ, as well as the AS scheduler. The result
reverses the order, and basically contradicts the
ranking established for the RAID-5 and RAID-
0 environments benchmarked in this study. On
the smaller RAID systems, the noop scheduler
was not able to outperform the CFQ imple-
mentation in any random I/O test. In the large
RAID-0 environment, the 84 rb-tree data struc-
tures that have to be maintained (from a mem-
ory as well as a CPU perspective) in CFQ rep-
resent a substantial, noticeable overhead factor.

The ramification is that there is no silver bullet
(a.k.a. I/O scheduler) that consistently provides
the best possible I/O performance. While the
AS scheduler excels on small configurations in
a sequential read scenario, the non-tuned dead-
line solution provides acceptable performance
on smaller RAID systems. The CFQ sched-
uler revealed the most potential from a tun-
ing perspective on smaller RAID-5 systems, as
increasing thenr_requests parameter pro-
vided the lowest response time. As the noop
scheduler represents a rather light-way solu-
tion, large RAID systems that consist of many
individual logical devices may benefit from the
reduced memory, as well as CPU overhead en-
countered by this solution. On large RAID sys-
tems that consist of many logical devices, the
other 3 implementations have to maintain (by
design) rather complex data structures as part
of the operating framework. Further, the study

442 • Linux Symposium 2004 • Volume Two

revealed that the proposed PID based and tun-
able CFQ implementation reflects a valuable
alternative to the standard CFQ implementa-
tion. The empirical data collected on a RAID-5
system supports that claim, as true fairness on
a per thread basis is being introduced.

Future work items include analyzing the rather
erratic performance behavior encountered by
the AS scheduler on xfs while processing a
metadata intensive workload profile. Another
focal point is an in-depth analysis of the in-
consistentnr_requests behavior observed
on large RAID-0 systems. Different hardware
setups will be used to aid this study. The an-
ticipatory heuristics of the AS code used in
Linux 2.6.5 is the target of another study, aim-
ing at enhancing the adaptiveness of the (status
quo) implementation based on certain work-
load conditions. Additional research in the area
of the proposed PID based CFQ implementa-
tion, as well as branching the I/O performance
study out into even larger I/O subsystems rep-
resent other work items that will be addressed
in the near future.

Legal Statement

This work represents the view of the authors,
and does not necessarily represent the view of
IBM. IBM and Power+ are trademarks or reg-
istered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both. Pentium is a trademark of Intel Cor-
poration in the United States, other countries, or
both. UNIX is a registered trademark of The Open
Group in the United States and other countries.
Other company, product, and service names may be
trademarks or service marks of others. SPEC™ and
the benchmark name SPECmail2001™ are regis-
tered trademarks of the Standard Performance Eval-
uation Corporation. All the benchmarking was con-
ducted for research purposes only, under laboratory
conditions. Results will not be realized in all com-

puting environments.

References

1. The Linux Source Code

2. Arcangeli, A., “Evolution of Linux Towards
Clustering,” EFD R&D Clamart, 2003.

3. Axboe, J., “Deadline I/O Scheduler
Tunables,” SuSE, EDF R&D, 2003

4. Corbet, J., “A new deadline I/O scheduler.”
http://lwn.net/Articles/10874 .

5. Corbet, J., “Anticipatory I/O scheduling.”
http://lwn.net/Articles/21274 .

6. Corbet, J., “The Continuing Development
of I/O Scheduling.”
http://lwn.net/Articles/21274 .

7. Corbet, J., “Porting drivers to the 2.5
kernel,” Linux Symposium, Ottawa, Canada,
2003.

8. Heger, D., Jacobs, J., McCloskey, B.,
Stultz, J., “Evaluating Systems Performance in
the Context of Performance Paths,” IBM
Technical White Paper, Austin, 2000.

9. Iyer, S., Drushel, P., “Anticipatory
Scheduling – A disk scheduling framework to
overcome deceptive idleness in synchronous
I/O,” SOSP 2001

10. Lee Irwin III, W., “A 2.5 Page Clustering
Implementation,” Linux Symposium, Ottawa,
2003

11. Nagar, S., Franke, H., Choi, J.,
Seetharaman, C., Kaplan, S., Singhvi, N.,
Kashyap, V., Kravetz, M., “Class-Based
Prioritized Resource Control in Linux,” 2003
Linux Symposium.

12. McKenney, P., “Stochastic Fairness

Linux Symposium 2004 • Volume Two • 443

Queueing,” INFOCOM, 1990

13. Molnar, I., “Goals, Design and
Implementation of the new ultra-scalable O(1)
scheduler.” (sched-design.txt).

14. Mosberger, D., Eranian, S., “IA-64 Linux
Kernel, Design and Implementation,” Prentice
Hall, NJ, 2002.

15. Shriver, E., Merchant, A., Wilkes, J., “An
Analytic Behavior Model with Readahead
Caches and Request Reordering,” Bell Labs,
1998.

16. Wienand, I., “An analysis of Next
Generation Threads on IA64,” HP, 2003.

17. Zimmermann, R., Ghandeharizadeh, S.,
“Continuous Display Using Heterogeneous
Disk-Subsystems,” ACM Multimedia, 1997.

18. http://www.iometer.org/

19. http://www.specbench.org/
osg/mail2001

20. http://www.specbench.org/
sfs97r1/docs/chapter1.html

Appendix A: Scheduler Tunables

Deadline Tunables

Theread_expire parameter (which is spec-
ified in milliseconds) is part of the actual dead-
line equation. As already discussed, the goal
of the scheduler is to insure (basically guaran-
tee) a start service time for a given I/O request.
As the design focuses manly on read requests,
each actual read I/O that enters the scheduler is
assigned a deadline factor that consists of the
current time plus theread_expire value (in
milliseconds).

The fifo_batch parameter governs the
number of request that are being moved to the

dispatch queue. In this design, as a read request
expires, it becomes necessary to move some
I/O requests from the sorted I/O scheduler list
into the block device’s actual dispatch queue.
Hence thefifo_batch parameter controls
the batch size based on the cost of each I/O re-
quest. A request is qualified by the scheduler as
either a seek or a stream request. For additional
information, please see the discussion on the
seek_cost as well as thestream_unit
parameters.

Theseek_cost parameter quantifies the cost
of a seek operation compared to astream_
unit (expressed in Kbytes). Thestream_
unit parameter dictates how man Kbytes are
used to describe a single stream unit. A stream
unit has an associated cost of 1, hence if a re-
quest consists of XY Kbytes, the actual cost
can be determined ascost = (XY + stream_unit
- 1)/ stream_unit. To reemphasize, the combi-
nation of thestream_unit , seek_cost ,
and fifo_batch parameters, respectively,
determine how many requests are potentially
being moved as an I/O request expires.

The write_starved parameter (expressed
in number of dispatches) indicates how many
times the I/O scheduler assigns preference to
read over write requests. As already dis-
cussed, when the I/O scheduler has to move
requests to the dispatch queue, the preference
scheme in the design favors read over write
requests. However, the write requests can
not be staved indefinitely, hence after the read
requests were favored forwrite_starved
number of times, write requests are being dis-
patched.

The front_merges parameter controls the
request merge technique used by the scheduler.
In some circumstances, a request may enter the
scheduler that is contiguous to a request that is
already in the I/O queue. It is feasible to as-
sume that the new request may have a correla-

444 • Linux Symposium 2004 • Volume Two

tion to either the front or the back of the already
queued request. Hence, the new request is la-
beled as either a front or a back merge candi-
date. Based on the way files are laid out, back
merge operations are more common than front
merges. For some workloads, it is unnecessary
to even consider front merge operations, ergo
setting thefront_merges flag to 0 disables
that functionality. It has to be pointed out that
despite setting the flag to 0, front merges may
still happen due to the cachedmerge_last
hint component. But as this feature represents
an almost 0 cost factor, this is not considered
as an I/O performance issue.

AS Tunables

The parameterread_expire governs the
timeframe until a read request is labeled as
expired. The parameter further controls to
a certain extent the interval in-between ex-
pired requests are serviced. This approach
basically equates to determining the timeslice
a single reader request is allowed to use in
the general presence of other I/O requests.
The approximation100 * ((seek time
/ read_expire) + 1) describes the per-
centile of streaming read efficiency a physical
disk should receive in a environment that con-
sists of multiple concurrent read requests.

The parameterread_batch_expire gov-
erns the time assigned to a batch (or set)
of read requests prior to serving any (poten-
tially) pending write requests. Obviously, a
higher value increases the priority allotted to
read requests. Setting the value to less than
read_expire would reverse the scenario, as
at this point the write requests would be fa-
vored over the read requests. The literature
suggests setting the parameter to a multiple
of the read_expire value. The parame-
ters write_expire and write_batch_
expire , respectively, describe and govern the
above-discussed behavior for any (potential)

write requests.

The antic_expire parameter controls the
maximum amount of time the AS scheduler
will idle before moving on to another request.
The literature suggests initializing the parame-
ter slightly higher for large seek time devices.

Appendix B: Benchmark Environ-
ment

The benchmarking was performed in a Linux
2.6.4 environment. For this study, the CFQ I/O
scheduler was back-ported from Linux 2.6.5 to
2.6.4.

1.16-way 1.7Ghz Power4+™ IBM p690 SMP
system configured with 4GB memory. 28
15,000-RPM SCSI disk drives configured in
a single RAID-0 setup that used Emulex
LP9802-2G Fiber controllers (1 in use for the
actual testing). System was configured with the
Linux 2.6.4 operating system.

2.8-way NUMA system. IBM x440 with
Pentium™ IV Xeon 2.0GHz processors and
512KB L2 cache subsystem. Configured with
4 qla2300 fiber-cards (only one was used in
this study). The I/O subsystem consisted of 2
FAStT700 I/O controllers and utilized 15,000-
RPM SCSI 18GB disk drives. The system was
configured with 1GB of memory, setup as a
RAID-5 (5 disks) configuration, and used the
Linux 2.6.4 operating system.

3.Single CPU system. IBM x440 (8-way, only
one CPU was used in this study) with Pen-
tium™ IV Xeon 1.5GHz processor, and 512k
L2 cache subsystem. The system was config-
ured with a Adaptec aic7899 Ultra160 SCSI
adapter and a single 10,000 RPM 18GB disk.
The system used the Linux 2.6.4 operating sys-
tem and was configured with 1GB of memory.

Linux Symposium 2004 • Volume Two • 445

Workload Profiles

1. Web Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created sev-
eral hundred thousand files ranging from 4KB
to 64KB. The files were distributed across 100
directories, The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random read operations on ran-
domly chosen files. The workload distribu-
tion in this benchmark was derived from Intel’s
Iometer benchmark.

2. File Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random read or write operations
on randomly chosen files. The ratio of read to
write operations on a per thread basis was spec-
ified as 80% to 20%, respectively. The work-
load distribution in this benchmark was derived
from Intel’s Iometer benchmark.

3. Mail Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread exe-
cuted 1,000 random read, create, or delete op-
erations on randomly chosen files. The ratio
of read to create to delete operations on a per
thread basis was specified as 40% to 40% to

20%, respectively. The workload distribution
in this benchmark was (loosely) derived from
the SPECmail2001 benchmark.

4. MetaData Benchmark. The benchmark uti-
lized 4 worker threads per available CPU. In
a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random create, write (append),
or delete operations on randomly chosen files.
The ratio of create to write to delete operations
on a per thread basis was specified as 40% to
40% to 20%.

(i) Sequential Read Benchmark. The bench-
mark utilized 4 worker threads per available
CPU. In a first phase, the benchmark created
several hundred 50MB files in a single direc-
tory structure. The goal of the create phase was
to exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread exe-
cuted 64KB sequential read operations, start-
ing at offset 0 reading the entire file up to off-
set 5GB. This process was repeated on a per
worker thread basis 20 times on randomly cho-
sen files.

(ii) Sequential Write (Create) Benchmark. The
benchmark utilized 4 worker threads per avail-
able CPU. Each worker thread executed 64KB
sequential write operations up to a target file
size of 50MB. This process was repeated on a
per worker-thread basis 20 times on newly cre-
ated files.

446 • Linux Symposium 2004 • Volume Two

Appendix C: Raw Data Sheets (Mean Response Time in Seconds over 3 Test
Runs)

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 610.9 574.6 567.7 579.1 613.5 572.9 571.3 569.9

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 621 634.1 623.6 597.5 883.8 781.8 773.3 771.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 531.4 502.1 498.3 486.8 559 462.7 461.6 462.9

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 508.9 485.3 522.5 505.5 709.3 633 648.5 650.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 405 953.2 939.4 945.4 385.2 872.8 881.3 872.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 261.3 276.5 269.1 282.6 225.7 222.6 220.9 222.4

Table 2: Single Disk Single CPU – Mean Response Time in Seconds

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 77.2 81.2 86.5 82.7 83.8 90.3 96.6 90.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 147.8 148.4 133 145.3 205.8 90.8 101.6 100.8

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 70.2 58.4 66.2 59.2 82.1 81.3 78.8 75.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 119.2 114.8 115.3 119.3 153.9 92.1 100.7 92.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 517.5 631.1 654.1 583.5 515.8 624.4 628.7 604.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 1033.2 843.7 969.5 840.5 426.6 422.3 462.6 400.4

Table 3: RAID-5 8-Way Setup – Mean Response Time in Seconds

Linux Symposium 2004 • Volume Two • 447

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 78.3 72.1 87.1 70.7 94.1 75 89.2 76

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 127.1 133 137.3 124.9 189.1 101.1 104.6 99.3

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 62.4 58.8 75.3 57.5 79.4 72.83 80.6 71.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 110.2 92.9 118.8 99.6 152.5 100.2 95.1 81

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 523.8 586.2 585.3 618.7 518.5 594.8 580.7 594.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 968.2 782.9 1757.8 813.2 394.3 395.6 549.9 436.4

Table 4: RAID-5 8-Way Setup –nr_requests = 2,560 – Mean Response Time in Seconds

AS - ext3 DL - ext3 AS Tuned - ext3 AS - xfs DL - xfs AS Tuned - xfs
File Server 77.2 81.2 72.1 83.8 90.3 84.5

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
MetaData 147.8 148.4 133.7 205.8 90.8 187.4

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Web Server 70.2 58.4 62 82.1 81.3 75.9

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Mail Server 119.2 114.8 103.5 153.9 92.1 140.2

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Seq. Read 517.5 631.1 634.5 515.8 624.4 614.1

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Seq. Write 1033.2 843.7 923.4 426.6 422.3 389.1

Table 5: RAID-5 8-Way - Default AS, Default deadline, and Tuned AS Comparison - Mean
Response Time in Seconds

CFQ-ext3 PID-Tuned-ext3 CFQ Tuned-ext3 CFQ-xfs PID-Tuned-xfs CFQ Tuned-xfs
File Server 70.7 71.1 70.6 76 75.9 74.3

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
MetaData 124.9 122 125.1 99.3 92.9 97.4

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Web Server 57.5 55.8 58 71.7 73 72.5

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Mail Server 99.6 94.5 93.3 81 93.6 93.3

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Seq. Read 618.7 599.5 595.4 594.4 583.7 604.1

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Seq. Write 813.2 781.1 758.4 436.4 432.1 414.6

Table 6: RAID-5 8-Way- Default CFQ, PID Hashed CFQ &cfq_quantum=32 , Default CFQ
& cfq_quantum=32 – Mean Response Time in Seconds

448 • Linux Symposium 2004 • Volume Two

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 44.5 40 41.9 40.8 42.5 43 45.9 42.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 66.7 64.6 66.2 64 101.8 71.7 72.4 66.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 43.4 38.2 37.9 42.9 68.3 42.8 69.3 64.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 60.3 58.5 58.7 58.1 100.3 66.2 65.8 65.1

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 2582.1 470.4 460.2 510.9 2601.2 541 576.1 511.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 1313.8 1439.3 1171.1 1433.5 508.5 506.2 508.5 509.8

Table 7: RAID-0 16 – Default I/O Schedulers, No Tuning, Mean Response Time in Seconds

CFQ CFQ-T AS DL NO
Mixed ext3 334.1 288.1 371.2 301.2 333.5

CFQ CFQ-T AS DL NO
Mixed xfs 295 291 308.4 296 302.8

Table 8: RAID-5 8-Way Mixed Workload Behavior, Mean Response Time in Seconds

