
Reprinted from the

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Kernel Janitors: State of the Project

Arnaldo Carvalho de Melo
Conectiva S.A.

acme@conectiva.com.br

http://advogato.org/person/acme

Abstract

The Kernel Janitors Project has been cleaning
up the kernel for quite some time, in this pa-
per I’ll present what has been done, tasks that
kernel hackers added to TODO list, tools used
to help in the process, 2.5 changes that need to
be propagated thru the tree and other aspects of
kernel janitoring.

1 What is the Kernel Janitor
Project?

The Kernel Janitors Project grew out of our
search for things to help in the development
of the Linux kernel, and learning from other
patches submitted by more experienced peo-
ple, we saw that some of these patches indi-
cated error patterns that could exist in other
parts of the kernel, we looked and. . . yes, we
discovered that some parts of the kernel suf-
fered from the same problems and in the
process we found code bitrotting. . . I (acme)
started maintaining a TODO list for things
to fix or clean up and people started sub-
mitting suggestions for things to fix that I
collected athttp://bazar.conectiva.
com.br/~acme/TODO .

2 A Way for Newbies to Start
Hacking the Kernel

Looking at the httpd logs I discovered that lots
of people accessed it, so this indeed was some-
thing useful as a starting point for people also
wanting to help in cleaning up/fixing parts of
the kernel.

Several people have the goodwill to help in
kernel programming, but many don’t have the
time to help on areas that require more knowl-
edge and effort, so the Kernel Janitor Project
TODO list helps, as there are lots of simple
tasks that needs work but are trivial enough to
allow those people to help while not requiring
much time and effort.

3 The Project Moves to Source-
Forge

Dave Jones suggested that we moved this to
sourceforge, so that we could have it on CVS
and allow more people to have admin rights to
add more entries, add explanations about the
tasks, etc.

I then registered the domain kerneljanitors.org
and made it point to the sourceforge web page,
that is very simple but has important pointers
to resources for new janitors.



340 • Linux Symposium

4 Project Committers

We’re always accepting more people, prefer-
ably maintainers of parts of the kernel, so that
we can improve the TODO list, and as there
is always some boring and repetitive work that
the maintainers postpone because there is al-
ways more important things to do.

In fact even Linus has posted at least once in
the mailing list asking for help on simple repet-
itive tasks, such as the irqreturn_t conversion
for all the interrupt handling routines.

These are the current commiters for this
project, at this time:

• Arnaldo Carvalho de Melo

• Dave Jones

• Jeff Garzik

• Matthew Wilcox

• Randy Dunlap

• Tariq Shureih

• William Lee Irwin III

5 Mailing list

Using the SourceForge infrastructure we cre-
ates the kernel-janitor-discuss mailing list,
where we discuss the aspects of the project and
review janitor patches.

There has been a continuous arrival of people
asking where to start helping, and a number of
them became regular janitors.

6 Some Janitors

• William Stinson

– check_region removal

• Art Haas

– C99 struct init style

7 Tools

There are now several tools that help on pin-
pointing most of the entries in the TODO list
and even some more involved problems that
needs hands to fix, I’ll briefly talk about sev-
eral of such tools in the next sections.

7.1 Stanford Checker

Perhaps the first tool for source checking used
in the Linux kernel, the Stanford Checker is
based on a modified gcc that does several ver-
ifications for different types of common prob-
lems, and then the Stanford guys do some san-
ity checking and post the list on the linux-
kernel mailing list, where people comment on
it, checking if they are false positives and most
frequently fixing the bugs.

It is unfortunately an unreleased tool, but it has
been of great help over the last years.

7.2 kj.pl

This was a very simple perl script that Dave
Jones wrote, that searched for some very trivial
problems, but Dave has stopped working on it
as now we have smatch.

7.3 smatch

Dan Carpenter’s smatch is a released tool that
allows developers to write perl scripts to search
for problems, it is also based on a modified gcc.

Dan has created the kbugs.org web site where
he has several smatch scripts and a list of the



Linux Symposium 2003 • 341

results of those scripts, allowing janitors to
pick real problems to work on.

The current scripts, for reference, are:

• ReleaseRegion

• ReleaseIRQ

• DoubleSpinlock

• Dereference

• GFP_DMA

• UnreachedCode

• SpinlockUndefined

• FunctionStack

• UncheckedReturn

• SpinSleepLazy

• UnFree

I’ll quote Dan now just as an example of
smatch results in kbugs.org:

“There were quite a few smatch related fixes
in the 2.5.69 kernel. Someone fixed 4
SpinSleepLazy bugs, 3 UnreachedCode bugs
and 6 unchecked calls ofcopy_to_user() .
It’s not entirely clear who did what from the
changelog, but thank you anonymous heros.”

7.4 cqual

Cqual is another tool that can help finding
problems on codebases such as the kernel, here
is the project description, from its authors:

“Cqual is a type-based analysis tool that pro-
vides a lightweight, practical mechanism for
specifying and checking properties of C pro-
grams. Cqual extends the type system of C
with extra user-defined type qualifiers. The

programmer adds type qualifier annotations to
their program in a few key places, and Cqual
performs qualifier inference to check whether
the annotations are correct. The analysis re-
sults are presented with a user interface that
lets the programmer browse the inferred quali-
fiers and their flow paths.”

It is part of a bigger project at the University
of Berkeley called Open Source Quality, this
seems to be a project that deserves investiga-
tion by janitors as it wasn’t mentioned up to
now on the kjp mainling list.

7.5 sparse

And now to something unreleased at this time:
Linus Torvalds’s sparse tool:

“Sparse is a semantic parser of source files: it’s
neither a compiler (although it could be used
as a front-end for one), nor is it a preprocessor
(although it contains as a part of it a prepro-
cessing phase).

It is meant to be a small—and simple—library.
Scanty and meager, and partly because of that
easy to use. It has one mission in life: create a
semantic parse tree for some arbitrary user for
further analysis. It’s not a tokenizer, nor is it
some generic context-free parser. In fact, con-
text (semantics) is what it’s all about—figuring
out not just what the grouping of tokens are, but
what thetypesare that the grouping implies.”

It is indeed very interesting that more and more
people are working towards having tools that
can help in improving the quality of Open
Source projects such as Linux.

8 Documentation

• lwn.net Articles by Jonathan Corbet

• Tariq’s "Drivers DOs and DONTs"



342 • Linux Symposium

• Other Articles for janitors

• Arjan’s article about how not write a
driver

• Greg KH’s article.


