
Le novita' nel Kernel Linux
(2.4.10-2.4.16, 2.5.x)

Andrea Arcangeli
andrea@suse.de

SuSE Kernel Developer
http://www.suse.com

Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE

Pluto Meeting 2001

Terni, 7 Dicembre 2001

 Current Kernels

 Stable:
 2.0.39 (obsolete)
 2.0.40-pre3
 2.2.20 (old)
 2.2.20aa1
 2.4.16 (new)
 2.4.17-pre5
 2.4.17-pre4aa1
 Unstable:
 2.5.0
 2.5.1-pre5

 Relevant merging during 2.4

 zerocopy sendfile (2.4.4)
 ext2 directories in pagecache (2.4.6)
 VM rewrite (2.4.10)
 blkdev-pagecache (2.4.10, part of it done better in

2.4.11 with the physical address space abstraction
and removal of update_buffers not coherent hack)

 O_DIRECT (2.4.10)
 rbtree for vma (2.4.10)
 ext3 (2.4.15)

 VM rewrite

 solved problems:
 kswapd looping forever on DMA or NORMAL

class-zones

 swap+ram weren't all available as virtual memory
 swapout storms
 benchmarks, when run repeatedly, gradually slow

down. predictable/repeatable

 google testcase
 higher performance (also under swap)
 highmem deadlocks

 VM design

 two LRU lists
 inactive_list
 pages not known to be very important
 a dirty page can stay a few passes in the inactive list while

getting written to disk by the fs

 active_list
 pages known to be referenced frequently
 defines the working set

 VM basics

 We add new pages to the head of the inactive_list.
 When low on memory we first refile some page from the

active_list tail to the inactive_list head, and then we start
freeing pages from the tail of the inactive_list.

 The detected working set is moved in the active_list.

 VM lists balance

 rotation
 the two lists rotate at different speed
 balance
 the bigger the active_size/inactive_size ratio, the faster

the active_list will rotate (larger refills)

 vm_balance_ratio
 the two lists will rotate at the same speed if the active_size

is equal to vm_balance_ratio * inactive_size

 the inactive list tends to rotate faster

 VM working set detection

 PG_referenced bitflag
 A new page has the referenced bitflag clear
 Really "read" pages [not re-referenced pages because of

seeks or readahead] are marked PG_referenced

 If we try to mark the page PG_referenced and we find that
it is inactive but it was just referenced previously
(PG_referenced just set) we clear PG_referenced and we
move the page into the active_list.

 An inactive page will be shrunk regardless of its
referenced bitflag (so readahead isn't too much penalized)

 An active page with the referenced bitflag set will have a
second chance before being refiled into the inactive list.

 mark_page_accessed

 mark_page_accessed() is the function that detects the
working set

 /*
 * Mark a page as having seen activity.
 *
 * If it was already so marked, move it
 * to the active queue and drop the referenced
 * bit. Otherwise, just mark it for future
 * action..
 */
 void mark_page_accessed(struct page *page)
 {
 	 if (!PageActive(page) && PageReferenced(page)) {
 	 	 activate_page(page);
 	 	 ClearPageReferenced(page);
 	 	 return;
 	 }
 	 /* Mark the page referenced, AFTER checking for previous usage.. */
 	 SetPageReferenced(page);
 }

 Busy pages

 While we browse the inactive list trying to free the
page we may fail because:

 the page is mapped (so the reference count is > 1)

 the page is locked (under I/O)

 the page is dirty (needs I/O to be flushed to disk)

 If the page is locked

 The only thing we can do about locked pages is to roll
the page over, and to try to free some other page, we'll
try to free this page again at the next pass.

 Locked pages can be under VM critical sections, they

could be getting freed by another CPU under us for
example. The VM serializes against itself using the
locked bitflag.

 Or more generally the locked pages can be under I/O,

like with swapouts/swapins/pageins.

 If the page is locked (code)

 from mm/vmscan.c
 	 	 if (unlikely(TryLockPage(page))) {
 	 	 	 if (PageLaunder(page) && (gfp_mask & __GFP_FS)) {
 	 	 	 	 page_cache_get(page);
 	 	 	 	 spin_unlock(&pagemap_lru_lock);
 	 	 	 	 wait_on_page(page);
 	 	 	 	 spin_lock(&pagemap_lru_lock);
 	 	 	 	 if (PageLRU(page) && !PageActive(page)) {
 	 	 	 	 	 list_del(entry);
 	 	 	 	 	 list_add_tail(entry, &inactive_list);
 	 	 	 	 }
 	 	 	 	 page_cache_release(page);
 	 	 	 }
 	 	 	 continue;
 	 	 }

 If the page is dirty

 If a page has the PG_dirty bitflag set it means it must
be flushed to the swap space before we can free it.

 As soon as a dirty page that seems freeable (so not
mapped) is positioned at the tail of the inactive list we
flush it to disk using the a_ops->writepage callback of
the underlying address space.

 The next time we'll run into the "ex-dirty" now "locked"
page we'll wait_on_page(), so we block waiting I/O
completion (we keep track of this case with
PG_launder).

 If the memory pressure stop we'll never need to block
in the VM waiting I/O completion.

 If the page is dirty (code)

 from mm/vmscan.c
 	 	 if (PageDirty(page) && is_page_cache_freeable(page) && page->mapping) {

 	 	 	 /*
 	 	 	 * It is not critical here to write it only if
 	 	 	 * the page is unmapped because any direct writer
 	 	 	 * like O_DIRECT would set the PG_dirty bitflag
 	 	 	 * on the physical page after having successfully
 	 	 	 * pinned it and after the I/O to the page is finished,
 	 	 	 * so the direct writes to the page cannot get lost.
 	 	 	 */
 	 	 	 int (*writepage)(struct page *);
 	 	 	 writepage = page->mapping->a_ops->writepage;
 	 	 	 if ((gfp_mask & __GFP_FS) && writepage) {
 	 	 	 	 ClearPageDirty(page);
 	 	 	 	 SetPageLaunder(page);
 	 	 	 	 page_cache_get(page);
 	 	 	 	 spin_unlock(&pagemap_lru_lock);

 	 	 	 	 writepage(page);
 	 	 	 	 page_cache_release(page);

 	 	 	 	 spin_lock(&pagemap_lru_lock);
 	 	 	 	 continue;
 	 	 	 }
 	 	 }

 If the page is mapped

 When a page is mapped it means it is part of an
address space, so before we can free it, we must
unmap the page from all its address spaces

 To do the "unmapping" we must walk the pagetables,
this is what the swap_out() function does for us.

 The swap_out() is a round robin pass, all over the
pagetables.

 The pagetables also holds an "accessed" information,
kept uptodate from the cpu, so during the pagetable
walking we also take the opportunity to activate all the
young pages.

 If the page is mapped

 from mm/vmscan.c
 	 	 if (!page->mapping || page_count(page) > 1) {
 	 	 	 spin_unlock(&pagecache_lock);
 	 	 	 UnlockPage(page);
 	 	 page_mapped:
 	 	 	 if (--max_mapped < 0) {
 	 	 	 	 spin_unlock(&pagemap_lru_lock);

 	 	 	 	 shrink_dcache_memory(vm_scan_ratio, gfp_mask);
 	 	 	 	 shrink_icache_memory(vm_scan_ratio, gfp_mask);
 	 	 	 	 shrink_dqcache_memory(vm_scan_ratio, gfp_mask);

 	 	 	 	 if (!*failed_swapout)
 	 	 	 	 	 *failed_swapout = !swap_out(classzone);
 	 	 	 	 max_mapped = nr_pages * vm_mapped_ratio;

 	 	 	 	 spin_lock(&pagemap_lru_lock);
 	 	 	 }
 	 	 	 continue;
 	 	 	
 	 	 }

 VM locking

 The inactive and active lists are protected by the
pagemap_lru lock.

 The vm shrinking is not serialized with any other
subsystem, it is also threaded against itself.

 The page lock and page counts plays an important
role in the cache shrinking.

 we can shrink the page->buffers if we hold the page lock
 we can free the page only if
 we own the page lock
 page->buffers is null
 the page is not pinned by anybody, refcount == 1 (only

pagecache)

 the kswapd 100% cpu load problem and
classzone

 The early 2.4 VM, when low on memory, didn't kept
track of the "used" classzones.

 It was trying to balance all the zones indipendently if
the "used" classzones were low on memory.

 This lead to kswapd running out of control and wasting
tons of cpu, if for example the ZONE_DMA was
getting all filled by unfreeable pages.

 This is been fixed with the classzone design,
classzone keeps track of the classzones that we need
to balance, and it doesn't waste cpu on mostly unused
classzones even if they're unfreeable.

 VM evolution

 The VM in the latest 2.4 kernel is much more powerful
than the 2.3/2.2 algorithms (not to tell 2.0 :).

 For example the VM in the 2.3.x kernels that I
designed when introducing the first page-lru list and
the pagemap_lru lock in linux around 2.3.1x time was
like this:

 VM evolution

 The 2.3.x algorithm wasn't capable of delayed
writes/swapouts, not-locked pages during kiobuf I/O,
shmem in pagecache in the tmpfs address space, and
most important cache pollution (heavy I/O) was
throwing away the working set.

 2.2.x is even more dumb, it doesn't have a lru at all,
it's a round robin on the physical ram.

 The early 2.4 VM algorithm was more complex than
the final one, there were multiple lru lists, lots of aging
information, many refile from one list to another, more
kernel daemons, special code in the allocator but I
didn't see the point of all those special cases.

 VM performance

 The performance of the VM code in late 2.4 (>=2.4.10)
is very good.

 However as said the most important reason for the
rewrite was to move the 2.2 boxes to 2.4 without
risking them to fall apart over the time.

 Mike Galbraith did some nice benchmarking with a
swap testcase `fresh boot -> time make -j30 bzImage`.

 2.4.13-ac6
 real 8m15.366s
 user 6m35.710s
 sys 0m33.570s
 2.4.17-pre1aa1
 real 7m39.066s
 user 6m38.400s
 sys 0m29.140s
 +7%

 SAP VM performance report

 	 2.4.7			 2.4.14 ---
 	 8.59			 15.47
 	 4.40			 14.76
 	 2.67			 11.61
 	 2.30			 14.63
 	 1.87			 14.42
 	 1.65			 15.30	
 	 1.26			 15.02	
 	 1.68			 14.53
 	 1.17 			 15.23
 	 1.80			 12.82
 	 1.10			 14.59
 	 1.20			 16.09
 	 1.26			 14.38
 	 1.34			 15.41
 http://groups.google.com/groups?q=wilhelm.nuesser%40sap.com&hl=en&rnum=1&selm=linux.kernel.3BF11C21.8090809%40sap.com

 VM reliability

 The vm in 2.4.17pre4aa1 should be rock solid now.
The design avoided all the superfluous parts while
maintaining the interesting parts of the early 2.4 VM
(like all the delayed writes/kiobuf pinning
logic/swap_out walking).

 Finally in the last weeks also the google testcase is
been fixed. The google testcase was really
reproducible trivially by just allocating lots of giga of
ram, and then starting doing intensive I/O, so Oracle
and all the other applications allocating lots of memory
and doing lots of I/O were heavily affected too.

 The new 2.4.15aa1 VM code is just in production.

 Buffered I/O

 In all modern operative systems all the I/O by default
is buffered by some kernel cache (often by multiple
layers of logical caches).

 Caching all the I/O as default policy is a critical
improvement for most of the programs out there
because it allows us to reduce dramatically the
number of I/O operations during the runtime of the
system.

 There are many heuristics used to optimally collect the
cache when we run low on memory (page
replacement).

 Only disadvantages of the buffered I/O

 When the I/O is buffered the harddisk does DMA
from/to the cache, not from/to the userspace
source/destination buffer allocated by the user
application.

 Those copies in turn imposes the CPU and memory
cost of moving the data from kernel cache to
userspace destination buffer for reads, and the other
way around for writes.

 This is of course a feature when such CPU copy
avoids us to start the I/O, but if there is cache pollution
maintaining a cache and passing through it for all the
I/O will be totally useless.

 Self caching applications

 One real world case where the kernel cache is totally
useless are the self caching applications (DBMS most
of the time).

 Self caching means that the application will keep its

own I/O cache in userspace (often in shared memory)
and so it won't need an additional lower level system
cache that wouldn't reduce the amount of I/O but that
would only waste ram, memory bandwidth, cpu
caches and CPU cycles.

 Advantage of self caching

 There are many reasons for doing self caching:
 the application can keep the cache in a logical

representation rather than in a physical representation
because the applications knows the semantics of the data

 when we run low on memory the app may even prefer the
logical cache to be swapped out and swapped in later
rather than paging in later the on-disk representation of the
data

 the applications may use a storage shared across multiple
hosts, so it will need to efficiently invalidate and flush the
cache in function of a cache coherency protocol
implemented in userspace

 the applications knows the semantics of the data so it is will
be able to do more advanced cache replacement decisions

 Advantage of O_DIRECT

 The usage domain of O_DIRECT are both self
caching applications and applications that pollute the
cache during their runtime.

 With the O_DIRECT patch the kernel will do DMA
directly from/to the physical memory pointed by the
userspace buffer passed as parameter to the
read/write syscalls. So there will be no CPU and mem
bandwidth spent in the copies between userspace
memory and kernel cache, and there will be no CPU
time spent in kernel in the management of the cache
(like cache lookups, per-page locks etc..).

 O_DIRECT Numbers

 I benchmarked the advantage of bypassing the cache
on a x86 low end 2-way SMP box, with 128Mbytes of
RAM and one IDE disk with a bandwidth of around
15Mbytes/sec, using bonnie on a 400Mbytes file.

 buffered IO

 -------Sequential Output-------- ---Sequential Input-- --Random--
 -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
 400 xxxx xxxx 12999 12.1 5918 10.8 xxxx xxxx 13412 12.1 xxx xxx
 400 xxxx xxxx 12960 12.3 5896 11.1 xxxx xxxx 13520 13.3 xxx xxx

 direct IO
 -------Sequential Output-------- ---Sequential Input-- --Random--
 -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
 400 xxxx xxxx 12810 1.8 5855 1.6 xxxx xxxx 13529 1.2 xxx xxx
 400 xxxx xxxx 12814 1.8 5866 1.7 xxxx xxxx 13519 1.3 xxx xxx

 Comments on the previous numbers

 In the environment of the previous benchmark we can
basically only see the dramatical reduction of CPU
usage, but also the memory usage is certainly being
reduced significantly by O_DIRECT.

 Note also that O_DIRECT only bypasses the cache for

the file data, not for the metadata, so we still take
advantage of the cache for the logical to physical
lookups.

 Low end vs high end storage devices

 It's interesting to note that in the previous environment
we had a very slow storage device, much much slower
than the maximal bandwidth sustained by the cache
and cpu of the machine.

 In real life the databases are attached to raid arrays

that delivers bandwidth of hundred of Mbytes per
second.

 The faster the disk is and the slower the cpu/memory

is, the more O_DIRECT will make a difference in the
numbers.

 membus/cpu bandwidth bottleneck

 With a very fast disk storage the membus and cpu
bandwidth will become a serious bottleneck for the
range of applications that cannot take advantage of
the kernel cache.

 For example if you run `hdparm -T /dev/hda' you will

see the maximum bandwidth that the buffer cache can
sustain on your machine. That can get quite close to
the actual bandwidth provided by an high end scsi
array. It will range between 100/200 Mbytes/sec on
recent machines.

 Highend Numbers

 The @fast.no developers are using the O_DIRECT patch for their self caching database
application and they benchmarked the throughput of their database w/ and w/o using
O_DIRECT.

 http://boudicca.tux.org/hypermail/linux-kernel/2001week17/1175.html
 http://boudicca.tux.org/hypermail/linux-kernel/2001week17/att-1175/01-directio.png

 Comments on the highend numbers

 The highend numbers were measured using a Dell
PowerEdge 4300, dual PIII with 2G of RAM using a
megaraid of 4 SCSI disks in raid0 for a total of 140GB.

 It's quite clear how much O_DIRECT is faster and
more scalable on such an high end hardware for a self
caching application like the @fast.no database.

 Similar improvements are expectable from
applications writing endless streams of multimedia
data to disk like digital multitrack video/audio recorder
where the kernel cache is absolutely worthless even if
it would be of the order of the gigabytes.

 Be careful in using O_DIRECT

 If the application may want to use O_DIRECT but it is
not self caching and you can imagine a setup with
enough RAM to cache all the working set of your
application then you should at least add a switch to
turn off the O_DIRECT behaviour, so if someone has
that much memory he will be able to take advantage
of it (remember linux runs on the GS 256GByte boxes
too ;).

 Adding a switch to turn off O_DIRECT can often be a

good idea so we can more easily measure how much
the buffered IO helps or hurts for a certain workload.

 O_DIRECT API

 To use O_DIRECT all you need to do is to pass the
O_DIRECT flag to the open(2) syscall. That will be
enough to tell the kernel that the next read/writes will
be direct and they will bypass the cache layer
completely.

 After opening with O_DIRECT there are two
constraints imposed on both the buffer alignment and
the size of the buffer. (second and third parameters of
read/write syscalls)

 The buffer must be softblocksize aligned and the size
of the buffer must be a multiple of the softblocksize.

 softblocksize vs hardblocksize

 The softblocksize is the blocksize of the filesystem
(mke2fs -b 4096 for example creates a filesystem with
a blocksize of 4096 bytes)

 The hardblocksize is instead the minimal blocksize

provided by the hardware.

 It is possible we reduce the constraint from the

softblocksize to the hardblocksize to allow people to
decrease the I/O load during non contiguous (aka
random) I/O.

 2.5 future potential features

 BIO (block I/O) I/O subsystem API rewrite (one single bio is
enough to do I/O in more than on page)

 even higher SMP scalability (io_request_lock just gone,
Read Copy Update)

 scalable scheduler multiqueue possibly decreasing the
current O(NR_tasks_running) complexity

 async-IO
 x86-64 merging
 preemptive kernel (maybe, probably not)
 further (last?) analysis of reverse pagetable maps in the VM
 large pagetable support?
 page coloring?
 more/better drivers as usual :)
 ...

 Q/A

