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 Current Kernels
 

  Stable:
      2.0.39 (obsolete)
            2.0.40-pre3
      2.2.20 (old)
            2.2.20aa1
      2.4.16 (new)
            2.4.17-pre5
            2.4.17-pre4aa1 
  Unstable:
      2.5.0
            2.5.1-pre5 



 Relevant merging during 2.4
 

  zerocopy sendfile (2.4.4)
  ext2 directories in pagecache (2.4.6)
  VM rewrite (2.4.10)
  blkdev-pagecache (2.4.10, part of it done better in 

2.4.11 with the physical address space abstraction 
and removal of update_buffers not coherent hack)

  O_DIRECT (2.4.10)
  rbtree for vma (2.4.10)
  ext3 (2.4.15)
 



 VM rewrite
 

 solved problems: 
  kswapd looping forever on DMA or NORMAL 

class-zones

  swap+ram weren't all available as virtual memory
  swapout storms
  benchmarks, when run repeatedly, gradually slow 

down. predictable/repeatable
 
  google testcase
  higher performance (also under swap)
  highmem deadlocks
 



 VM design
 

  two LRU lists 
      inactive_list
            pages not known to be very important
            a dirty page can stay a few passes in the inactive list while 

getting written to disk by the fs
 
      active_list
            pages known to be referenced frequently
            defines the working set
 



 VM basics
 

            We add new pages to the head of the inactive_list.
            When low on memory we first refile some page from the 

active_list tail to the inactive_list head, and then we start 
freeing pages from the tail of the inactive_list.

            The detected working set is moved in the active_list.

 



 VM lists balance
 

  rotation
      the two lists rotate at different speed
  balance
      the bigger the active_size/inactive_size ratio, the faster 

the active_list will rotate (larger refills)

  vm_balance_ratio
      the two lists will rotate at the same speed if the active_size 

is equal to vm_balance_ratio * inactive_size

      the inactive list tends to rotate faster 



 VM working set detection
 

  PG_referenced bitflag
      A new page has the referenced bitflag clear
      Really "read" pages [not re-referenced pages because of 

seeks or readahead] are marked PG_referenced

      If we try to mark the page PG_referenced and we find that 
it is inactive but it was just referenced previously 
(PG_referenced just set) we clear PG_referenced and we 
move the page into the active_list.

      An inactive page will be shrunk regardless of its 
referenced bitflag (so readahead isn't too much penalized)

      An active page with the referenced bitflag set will have a 
second chance before being refiled into the inactive list.

 



 mark_page_accessed
 

  mark_page_accessed() is the function that detects the 
working set

  /*
   * Mark a page as having seen activity.
   *
   * If it was already so marked, move it
   * to the active queue and drop the referenced
   * bit. Otherwise, just mark it for future
   * action..
   */
  void mark_page_accessed(struct page *page)
  {
   	 if (!PageActive(page) && PageReferenced(page)) {
   	 	 activate_page(page);
   	 	 ClearPageReferenced(page);
   	 	 return;
   	 }  
   	 /* Mark the page referenced, AFTER checking for previous usage.. */
   	 SetPageReferenced(page);
  }  



  

 Busy pages
 

  While we browse the inactive list trying to free the 
page we may fail because:

 
      the page is mapped (so the reference count is > 1)
 
      the page is locked (under I/O)
 
      the page is dirty (needs I/O to be flushed to disk)
 



  

 If the page is locked
 

  The only thing we can do about locked pages is to roll 
the page over, and to try to free some other page, we'll 
try to free this page again at the next pass.

 
  Locked pages can be under VM critical sections, they 

could be getting freed by another CPU under us for 
example. The VM serializes against itself using the 
locked bitflag.

 
  Or more generally the locked pages can be under I/O, 

like with swapouts/swapins/pageins.
 



  

 If the page is locked (code)
 

  from mm/vmscan.c 
   	 	 if (unlikely(TryLockPage(page))) {
   	 	 	 if (PageLaunder(page) && (gfp_mask & __GFP_FS)) {
   	 	 	 	 page_cache_get(page);
   	 	 	 	 spin_unlock(&pagemap_lru_lock);
   	 	 	 	 wait_on_page(page);
   	 	 	 	 spin_lock(&pagemap_lru_lock);
   	 	 	 	 if (PageLRU(page) && !PageActive(page)) {
   	 	 	 	 	 list_del(entry);
   	 	 	 	 	 list_add_tail(entry, &inactive_list);
   	 	 	 	 }
   	 	 	 	 page_cache_release(page);
   	 	 	 }
   	 	 	 continue;
   	 	 }  



  

 If the page is dirty
 

  If a page has the PG_dirty bitflag set it means it must 
be flushed to the swap space before we can free it.

  As soon as a dirty page that seems freeable (so not 
mapped) is positioned at the tail of the inactive list we 
flush it to disk using the a_ops->writepage callback of 
the underlying address space.

  The next time we'll run into the "ex-dirty" now "locked" 
page we'll wait_on_page(), so we block waiting I/O 
completion (we keep track of this case with 
PG_launder).

  If the memory pressure stop we'll never need to block 
in the VM waiting I/O completion.

 



  

 If the page is dirty (code)
 

  from mm/vmscan.c
   	 	 if (PageDirty(page) && is_page_cache_freeable(page) && page->mapping) {

   	 	 	 /*
   	 	 	  * It is not critical here to write it only if
   	 	 	  * the page is unmapped because any direct writer
   	 	 	  * like O_DIRECT would set the PG_dirty bitflag
   	 	 	  * on the physical page after having successfully
   	 	 	  * pinned it and after the I/O to the page is finished,
   	 	 	  * so the direct writes to the page cannot get lost.
   	 	 	  */
   	 	 	 int (*writepage)(struct page *);  
   	 	 	 writepage = page->mapping->a_ops->writepage;
   	 	 	 if ((gfp_mask & __GFP_FS) && writepage) {
   	 	 	 	 ClearPageDirty(page);
   	 	 	 	 SetPageLaunder(page);
   	 	 	 	 page_cache_get(page);
   	 	 	 	 spin_unlock(&pagemap_lru_lock); 
   
   	 	 	 	 writepage(page);
   	 	 	 	 page_cache_release(page);
  
   	 	 	 	 spin_lock(&pagemap_lru_lock);
   	 	 	 	 continue;
   	 	 	 }
   	 	 }  



  

 If the page is mapped
 

  When a page is mapped it means it is part of an 
address space, so before we can free it, we must 
unmap the page from all its address spaces

  To do the "unmapping" we must walk the pagetables, 
this is what the swap_out() function does for us.

  The swap_out() is a round robin pass, all over the 
pagetables.

  The pagetables also holds an "accessed" information, 
kept uptodate from the cpu, so during the pagetable 
walking we also take the opportunity to activate all the 
young pages.

 



  

 If the page is mapped
 

  from mm/vmscan.c 
   	 	 if (!page->mapping || page_count(page) > 1) {
   	 	 	 spin_unlock(&pagecache_lock);
   	 	 	 UnlockPage(page);
   	 	 page_mapped:
   	 	 	 if (--max_mapped < 0) {
   	 	 	 	 spin_unlock(&pagemap_lru_lock); 
  
   	 	 	 	 shrink_dcache_memory(vm_scan_ratio, gfp_mask);
   	 	 	 	 shrink_icache_memory(vm_scan_ratio, gfp_mask);
   	 	 	 	 shrink_dqcache_memory(vm_scan_ratio, gfp_mask);
   
   	 	 	 	 if (!*failed_swapout)
   	 	 	 	 	 *failed_swapout = !swap_out(classzone);
   	 	 	 	 max_mapped = nr_pages * vm_mapped_ratio; 
   
   	 	 	 	 spin_lock(&pagemap_lru_lock);
   	 	 	 }
   	 	 	 continue;
   	 	 	
   	 	 }  



  

 VM locking
 

  The inactive and active lists are protected by the 
pagemap_lru lock.

  The vm shrinking is not serialized with any other 
subsystem, it is also threaded against itself.

  The page lock and page counts plays an important 
role in the cache shrinking.

      we can shrink the page->buffers if we hold the page lock
      we can free the page only if
            we own the page lock
            page->buffers is null
            the page is not pinned by anybody, refcount == 1 (only 

pagecache)
 



  

 the kswapd 100% cpu load problem and 
classzone

 

  The early 2.4 VM, when low on memory, didn't kept 
track of the "used" classzones.

  It was trying to balance all the zones indipendently if 
the "used" classzones were low on memory.

  This lead to kswapd running out of control and wasting 
tons of cpu, if for example the ZONE_DMA was 
getting all filled by unfreeable pages.

  This is been fixed with the classzone design, 
classzone keeps track of the classzones that we need 
to balance, and it doesn't waste cpu on mostly unused 
classzones even if they're unfreeable.

 



  

 VM evolution
 

  The VM in the latest 2.4 kernel is much more powerful 
than the 2.3/2.2 algorithms (not to tell 2.0 :).

  For example the VM in the 2.3.x kernels that I 
designed when introducing the first page-lru list and 
the pagemap_lru lock in linux around 2.3.1x time was 
like this:

 



  

 VM evolution
 

  The 2.3.x algorithm wasn't capable of delayed 
writes/swapouts, not-locked pages during kiobuf I/O, 
shmem in pagecache in the tmpfs address space, and 
most important cache pollution (heavy I/O) was 
throwing away the working set.

  2.2.x is even more dumb, it doesn't have a lru at all, 
it's a round robin on the physical ram.

  The early 2.4 VM algorithm was more complex than 
the final one, there were multiple lru lists, lots of aging 
information, many refile from one list to another, more 
kernel daemons, special code in the allocator but I 
didn't see the point of all those special cases.

 



  

 VM performance
 

  The performance of the VM code in late 2.4 (>=2.4.10) 
is very good.

  However as said the most important reason for the 
rewrite was to move the 2.2 boxes to 2.4 without 
risking them to fall apart over the time.

  Mike Galbraith did some nice benchmarking with a 
swap testcase `fresh boot -> time make -j30 bzImage`.

                           2.4.13-ac6
                           real    8m15.366s 
                           user    6m35.710s
                           sys     0m33.570s
                           2.4.17-pre1aa1
                           real    7m39.066s
                           user    6m38.400s
                           sys     0m29.140s
                           +7%                           



                           

 SAP VM performance report
 
   	 2.4.7			 2.4.14  -----------------------------------------
   	 8.59			 15.47
   	 4.40			 14.76
   	 2.67			 11.61
   	 2.30			 14.63
   	 1.87			 14.42
   	 1.65			 15.30	
   	 1.26			 15.02	
   	 1.68			 14.53
   	 1.17 			 15.23
   	 1.80			 12.82
   	 1.10			 14.59
   	 1.20			 16.09
   	 1.26			 14.38
   	 1.34			 15.41  
   http://groups.google.com/groups?q=wilhelm.nuesser%40sap.com&hl=en&rnum=1&selm=linux.kernel.3BF11C21.8090809%40sap.com  



  

 VM reliability
 

  The vm in 2.4.17pre4aa1 should be rock solid now. 
The design avoided all the superfluous parts while 
maintaining the interesting parts of the early 2.4 VM 
(like all the delayed writes/kiobuf pinning 
logic/swap_out walking).

  Finally in the last weeks also the google testcase is 
been fixed. The google testcase was really 
reproducible trivially by just allocating lots of giga of 
ram, and then starting doing intensive I/O, so Oracle 
and all the other applications allocating lots of memory 
and doing lots of I/O were heavily affected too.

  The new 2.4.15aa1 VM code is just in production.
 



  

 Buffered I/O
 

  In all modern operative systems all the I/O by default 
is buffered by some kernel cache (often by multiple 
layers of logical caches).

  Caching all the I/O as default policy is a critical 
improvement for most of the programs out there 
because it allows us to reduce dramatically the 
number of I/O operations during the runtime of the 
system.

  There are many heuristics used to optimally collect the 
cache when we run low on memory (page 
replacement).

 



  

 Only disadvantages of the buffered I/O
 

  When the I/O is buffered the harddisk does DMA 
from/to the cache, not from/to the userspace 
source/destination buffer allocated by the user 
application.

  Those copies in turn imposes the CPU and memory 
cost of moving the data from kernel cache to 
userspace destination buffer for reads, and the other 
way around for writes.

  This is of course a feature when such CPU copy 
avoids us to start the I/O, but if there is cache pollution 
maintaining a cache and passing through it for all the 
I/O will be totally useless.

 



  

 Self caching applications
 

  One real world case where the kernel cache is totally 
useless are the self caching applications (DBMS most 
of the time).

 
  Self caching means that the application will keep its 

own I/O cache in userspace (often in shared memory) 
and so it won't need an additional lower level system 
cache that wouldn't reduce the amount of I/O but that 
would only waste ram, memory bandwidth, cpu 
caches and CPU cycles.

 



  

 Advantage of self caching
 

  There are many reasons for doing self caching:
            the application can keep the cache in a logical 

representation rather than in a physical representation 
because the applications knows the semantics of the data

            when we run low on memory the app may even prefer the 
logical cache to be swapped out and swapped in later 
rather than paging in later the on-disk representation of the 
data

            the applications may use a storage shared across multiple 
hosts, so it will need to efficiently invalidate and flush the 
cache in function of a cache coherency protocol 
implemented in userspace

            the applications knows the semantics of the data so it is will 
be able to do more advanced cache replacement decisions

 



  

 Advantage of O_DIRECT
 

  The usage domain of O_DIRECT are both self 
caching applications and applications that pollute the 
cache during their runtime.

  With the O_DIRECT patch the kernel will do DMA 
directly from/to the physical memory pointed by the 
userspace buffer passed as parameter to the 
read/write syscalls. So there will be no CPU and mem 
bandwidth spent in the copies between userspace 
memory and kernel cache, and there will be no CPU 
time spent in kernel in the management of the cache 
(like cache lookups, per-page locks etc..).

 



  

 O_DIRECT Numbers
 

  I benchmarked the advantage of bypassing the cache 
on a x86 low end 2-way SMP box, with 128Mbytes of 
RAM and one IDE disk with a bandwidth of around 
15Mbytes/sec, using bonnie on a 400Mbytes file.

  buffered IO

               -------Sequential Output-------- ---Sequential Input-- --Random--
               -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
            MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU  /sec %CPU
           400  xxxx xxxx 12999 12.1  5918 10.8  xxxx xxxx 13412 12.1   xxx  xxx
           400  xxxx xxxx 12960 12.3  5896 11.1  xxxx xxxx 13520 13.3   xxx  xxx

  direct IO
               -------Sequential Output-------- ---Sequential Input-- --Random--
               -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
            MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU  /sec %CPU
           400  xxxx xxxx 12810  1.8  5855  1.6  xxxx xxxx 13529  1.2   xxx  xxx
           400  xxxx xxxx 12814  1.8  5866  1.7  xxxx xxxx 13519  1.3   xxx  xxx 



  

 Comments on the previous numbers
 

  In the environment of the previous benchmark we can 
basically only see the dramatical reduction of CPU 
usage, but also the memory usage is certainly being 
reduced significantly by O_DIRECT.

 
  Note also that O_DIRECT only bypasses the cache for 

the file data, not for the metadata, so we still take 
advantage of the cache for the logical to physical 
lookups.

 



  

 Low end vs high end storage devices
 

  It's interesting to note that in the previous environment 
we had a very slow storage device, much much slower 
than the maximal bandwidth sustained by the cache 
and cpu of the machine.

 
  In real life the databases are attached to raid arrays 

that delivers bandwidth of hundred of Mbytes per 
second.

 
  The faster the disk is and the slower the cpu/memory 

is, the more O_DIRECT will make a difference in the 
numbers.

 



  

 membus/cpu bandwidth bottleneck
 

  With a very fast disk storage the membus and cpu 
bandwidth will become a serious bottleneck for the 
range of applications that cannot take advantage of 
the kernel cache.

 
  For example if you run `hdparm -T /dev/hda' you will 

see the maximum bandwidth that the buffer cache can 
sustain on your machine. That can get quite close to 
the actual bandwidth provided by an high end scsi 
array. It will range between 100/200 Mbytes/sec on 
recent machines.

 



  

 Highend Numbers
 
 The @fast.no developers are using the O_DIRECT patch for their self caching database 
application and they benchmarked the throughput of their database w/ and w/o using 
O_DIRECT.

   http://boudicca.tux.org/hypermail/linux-kernel/2001week17/1175.html
   http://boudicca.tux.org/hypermail/linux-kernel/2001week17/att-1175/01-directio.png

 



  

 Comments on the highend numbers
 

  The highend numbers were measured using a Dell 
PowerEdge 4300, dual PIII with 2G of RAM using a 
megaraid of 4 SCSI disks in raid0 for a total of 140GB.

  It's quite clear how much O_DIRECT is faster and 
more scalable on such an high end hardware for a self 
caching application like the @fast.no database.

  Similar improvements are expectable from 
applications writing endless streams of multimedia 
data to disk like digital multitrack video/audio recorder 
where the kernel cache is absolutely worthless even if 
it would be of the order of the gigabytes.

 



  

 Be careful in using O_DIRECT
 

  If the application may want to use O_DIRECT but it is 
not self caching and you can imagine a setup with 
enough RAM to cache all the working set of your 
application then you should at least add a switch to 
turn off the O_DIRECT behaviour, so if someone has 
that much memory he will be able to take advantage 
of it (remember linux runs on the GS 256GByte boxes 
too ;).

 
  Adding a switch to turn off O_DIRECT can often be a 

good idea so we can more easily measure how much 
the buffered IO helps or hurts for a certain workload.

 



  

 O_DIRECT API
 

  To use O_DIRECT all you need to do is to pass the 
O_DIRECT flag to the open(2) syscall. That will be 
enough to tell the kernel that the next read/writes will 
be direct and they will bypass the cache layer 
completely.

  After opening with O_DIRECT there are two 
constraints imposed on both the buffer alignment and 
the size of the buffer. (second and third parameters of 
read/write syscalls)

  The buffer must be softblocksize aligned and the size 
of the buffer must be a multiple of the softblocksize.

 



  

 softblocksize vs hardblocksize
 

  The softblocksize is the blocksize of the filesystem 
(mke2fs -b 4096 for example creates a filesystem with 
a blocksize of 4096 bytes)

 
  The hardblocksize is instead the minimal blocksize 

provided by the hardware.
 
  It is possible we reduce the constraint from the 

softblocksize to the hardblocksize to allow people to 
decrease the I/O load during non contiguous (aka 
random) I/O.

 



  

 2.5 future potential features
 

            BIO (block I/O) I/O subsystem API rewrite (one single bio is 
enough to do I/O in more than on page)

            even higher SMP scalability (io_request_lock just gone, 
Read Copy Update)

            scalable scheduler multiqueue possibly decreasing the 
current O(NR_tasks_running) complexity

            async-IO
            x86-64 merging
            preemptive kernel (maybe, probably not)
            further (last?) analysis of reverse pagetable maps in the VM
            large pagetable support?
            page coloring?
            more/better drivers as usual :)
            ... 



  

 Q/A


