The GNOME desktop environment

Miguel de Icazarhiguel@gnu.org )
Instituto de Ciencias Nucleares, UNAM

Elliot Lee (sopwith@redhat.com )

Federico Menaquartic@gimp.org )
Instituto de Ciencias Nucleares, UNAM

Tom Tromey {romey@cygnus.com )

July 9, 1998

Abstract

We present an overview of the free GNU Network Object Model Environment
(GNOME). GNOME is a suite of X11 GUI applications that provides joyusers
and hackers alike. It has been designed for extensibility and automatioriryy us
CORBA and scripting languages throughout the code. GNOME is licensger un
the terms of the GNU GPL and the GNU LGPL and has been developed on the
Internet by a loosely-coupled team of programmers.

1 Motivation

Free operating systerhare excellent at providing server-class services, andesoften
the ideal choice for a server machine. However, the lack ohsistent user interface and
of consumer-targeted applications has prevented freatpgisystems from reaching the
vast majority of users — the desktop users. As such, the bemédfiree software have
only been enjoyed by the technically savvy computer usemeonity. Most users are
still locked into proprietary solutions for their desktop/gonments.

By using GNOME, free operating systems will have a compleger-friendly desktop
which will provide users with powerful and easy-to-use giiapl applications.

Many people have suggested that the cause for the lack ofifereoriented appli-
cations is that these do not provide enough excitement tkehsicas opposed to system-
level programming.

Since most of the GNOME code had to be written by hackers, wetkem happy:
the magic recipe here is to design GNOME around an adrenadsponse by trying to
use exciting models and ideas in the applications.

1We are using the term “free” in this document to denote “freat| not price.



The GNOME desktop project is open to ideas and to new progemsinMany good
ideas that have originated on the GNOME mailing list havenbeglemented in the sys-
tem: GNOME is not static, and we are trying to have fun whilenviée it, so suggestions
regarding making the system more friendly and more powésfithe seasoned Unix user
are always welcome. We are not attached to our code: if soenemmes up with a better
implementation of anything inside GNOME, we apply natuelestion and choose the
best.

1.1 KDE and the Qt license

GNOME originally was a project to provide free systems wittoenponent model similar
in spirit to Microsoft's OLE2 and ActiveX and OpenDOC. Thigginal incarnation of
GNOME was not finished nor implemented.

Later, the K Desktop Environment projeg}fappeared. KDE aims to provide a user
friendly and consistent desktop suite of applications.\s#te KDE effort is based on the
Qt user interface toolkit which is a non-free library. Theimaroblem is that modification
of the toolkit is not allowed. The ability to modify the inface toolkit is a requirement of
free softwareP] and of the Open Source Software Guidelir®@splthough Qt is released
in source form, permission to redistribute changes madedalenied.

One option for our project was to write a free implementatd@t, but this presented
three major problems. First, Qt is a moving target. Secanglémenting a replacement
library to emulate an API is known to involve a lot of work irttee “quirk” department:
when a library is being written, the internal model used igemaften than not different
from the original model, and thus many little details and lenpentation dependencies
on the original model will take a lot of work to be implemenfaperly in the emulation
library.

Experience has shown this to be a major problem, and vari@amp@es exist: GNUstef]
cloning the OpenStep API; Wing] cloning the Win16 and now the Win32 APIs; and
LessTif[?] cloning the Motif API. All of these free software projectseaexamples of em-
ulation code that has taken several years to develop andhigtill not complete. These
issues make the emulation approach undesirable.

The final problem was that choosing Qt/KDE would lock us instng C++, which,
while not without its merits, has its share of critics too. pveferred to have the flexibility
to write our applications in whatever languages we like, diddhot want to alienate pro-
grammers who dislike C++. We have taken the route of makiad@NOME framework
accessible through as many programming languages as lpo&sdhuding C++.

2 What makes up a GNOME application

A number of characteristics make up a GNOME application: r@ssistent interface; in-
teroperability among the applications; being internatl@ed and localized; support for
network transparency and compliance with existing stadslar

Interoperability is achieved in a number of ways: drag arapdwupport is included
in most GNOME applications and, the use of CORBA and scrptsrencouraged to

2



provide an extensibility path for GNOME users.

2.1 Look and feel

GNOME applications are supposed to follow the GNOME Styledéf?]. The Style
Guide is intended to ensure a uniform look and feel on thetdpsK he Guide is currently
rather incomplete, but it is being actively developed. HixgsGUI standards make this
task easier than it seems.

Currently there are no plans for “GNOME Branding,” thouglstts occasionally
mentioned.

2.2 Gtk+

Gtk+[?] is the LGPL toolkit designed by Peter Mattis and Spencer téihfor use in
the GNU Image Manipulation Program (GIMP)] The toolkit has been maintained by a
cast of hundreds since it was first released to the publicjtamehow the foundation for
the GNOME user interface.

Gtk+ is an object-oriented GUI toolkit written in C. Bindigfpr other languages have
been written, allowing applications to use Gtk+ from a raojanguages, including Perl,
C++, Scheme, Objective-C, and TOM.

Gtk+'s primary objectives are correctness, performanae, @sability. By correct-
ness, we mean that the toolkit must be bug-free and must eedsmexpected. This is
reflected in the Gtk+ source by the use of pre-conditions amdenous runtime sanity
checks. These checks can be disabled at compilation timienfmoved performance.
This has proven to be very helpful for the application pragrger and this practice has
been extended to the rest of GNOME.

By performance, we mean that Gtk+ must not consume a lot ofirees — it must
be small and fast. By usability, we mean that Gtk+ must imglethsane, comprehensible
and scalable GUI concepts.

Gtk+ rests on a layer of libraries which isolate it from Xlémd so Gtk+ never calls
Xlib directly. This layer is called Gdk, and it is made up ofveml modules which
simplify much of the programming interface to the X Windows8m and abstract it
such that porting Gtk+ applications to another graphicgesyss just a matter of porting
the Gdk layer.

2.3 GdklImlib

The X libraries do not provide an easy way to load and manipufaages from within
application programs. Many programs need to load icons amdgps, and often need
to manipulate these images in a number of ways. Also, maryranaes need to quantize
images to the best color representation that the displayoffan For pseudo-color X
visuals, images often have to be remapped to a common pafedteithered for better
results.

Gdk Imlib[?] is a library that complements Gtk+ in this respect, pravidia uni-
form interface to common image manipulation tasks. Loadirignages is accomplished

3



through “native” format support via libraries likéogif , libpng , andlibjpeg

Gdk Imlib also has the ability to launch external programs talimages. In fact, if
Gdk.imlib is not compiled with native support for a certain forini resorts to calling
external programs to load the requested image. The defdalnal loaders are provided
by ImageMagick and the NetPBM suite of utilities.

When loading an image, Gdknlib automatically chooses the best X visual available,
and it remaps and dithers images to the corresponding esgeg®n if necessary. It
also provides convenient functions for image scaling, moborection, cropping, flipping,
rotation, and saving via the native libraries or the extepnagrams.

All'images displayed in the GNOME desktop are rendered by _{Bdlb. This means
that GNOME applications are well behaved and do not consuhot the available col-
ors. Color-hungry applications can coexist peacefullyhveiach other while still letting
“badly behaved” applications likev and Netscape run without colormap flashing.

2.4 Themes

Support for themes is included in GNOME in various stagek+@ias been enhanced
to provide pluggable look and feel modules. Look and feel ntexl enable GNOME
applications to change their look: users can choose a spémifk and feel module to
make the application’s widgets look the way they want. Cuttyetwo look and feel
modules exist: The default Motif-like appearance and thedyp-based module. The
latter can be configured to use any sort of image achievingtapaar displays with
minimal effort.

A theme is made up of a look and feel module and all of its condition files plus a
set of icons, sounds, and desktop images.

2.5 Virtual file system

The virtual file system (VFS) code implements a humber of yweap for the file system
system calls. These wrappers create an extended file syg@re.sOnce a program
starts using the VFS code, access to files across the netwargitg the FTP or HTTP
protocols, and access to files inside various archiving &smwill be transparent to the
application.

The VFS code is designed to plug directly into existing caatel support for the
virtual file system can be toggled at compile time. One exgsproblem with the VFS
code is that wrappers only exist for the system calls, andode tas been written yet to
support thestdio  file system interfaces.

The virtual file system code was originally developed forlthignight Commandef]
file manager. This file manager is now being used as part of M@ME desktop envi-
ronment.

2.6 GNOME application framework libraries

The core development libraries for the GNOME system arealdivinto thdibgnome
andlibgnomeui libraries, and provide a convenient framework for appi@atpro-

4



grammers.

libgnome provides non-interface related functionality like mangtion of config-
uration files, portable dynamic linking, non-blocking DN&kups, global history for
“recently used files,” consistent command-line argumendipg, and others.

libgnomeui  provides user interface components that are higher-laeal those in
Gtk+. These widgets often do work “behind the scenes” inici@keep the user interface
consistent across the desktop, and to make the applicatigmgmmer’s life easier.

For example, th&snomeAppwidget is a top-level window that can be used by ap-
plications as their “main” window. AGnomeAppwindow has detachable menu and
tool bars, and it will automatically save the state and pasiof these when the window
is closed. Thgnome-app-helper  module provides a convenient API for generating
menus and tool bars without the drudgery of creating anchizigey the widgets by hand.

A very important part ofibgnomeui  is thegnome-stock module. This is a
collection of commonly-used icons and pixmaps that appitioa can use to enhance their
visual appearance. Stock icons are provided for commoratipes such as “New file,”
“Open file,” “Save file,” “Quit program,” “Cut/Copy/Pasteghd “Help”. gnome-stock
also provides functions that create menu items and buttithglese icons. The result is
that all applications can share the same set of icons, lgddia consistent look and feel
throughout the desktop. The API has been designed to wolktiadimes.

In addition to the stock icondibgnomeui  provides functions to create standard
dialog boxes and “properties” or configuration dialogs ali.\iidese insure consistency
across applications; dialog boxes have a consistent lodkeel, and all configuration
dialogs operate in a similar way.

GNOME makes use of the standard X session management pgraadancludes a
session manager implementation. GNOME applications neiabke to save and restore
their state when the session manager requests it. Thisysceerenient for users, as
they can simply log out from their session and have it regtoveen they log back in.
libgnomeui includes code to make session support easy to add to anatapiic

A port of Koen D’Hondt's XmHTML[?] widget is part of the GNOME libraries.
XmHTML this is a powerful tool that enables a wide range oflagapions to use HTML
to render their information. Currently this is being used3NOME’s mail, news and
help browser programs.

2.7 Internationalization

To make GNOME succeed in the desktop, applications will iaveupport the user’'s
local language. Most computer users are not full-time hagkend would rather use a
system that they can understand, with messages in theirdgegthan a system that only
displays English messages.

GNOME is using the GNUgettext [7] package to handle internationalization. Cur-
rently, translations to Spanish, German, French, Italorwegian, Czech, Finnish, Rus-
sian, and Korean have been written and are being maintained.



2.8 CORBA

CORBA, the Common Object Request Broker Architecture, iseehmanism for com-
munication and object sharing between languages, praemsd machines. OMG[

CORBA[?] is used as the communication channel between different BE@ompo-

nents, allowing us to tie many different parts of the systegether.

The lack of a reasonably efficient, free CORBA implementatidth C mappings has
delayed the adoption of CORBA in more parts of GNOME. The ftge- implementa-
tions of CORBA all either require too much memory to compitel generate huge stubs,
or are difficult to port.

Work has thus begun on the ORBit project, the goal of whiclo iprbduce a small
and efficient C ORB that works with Flick’s optimizing stubrapiler[?].

We are planning to use CORBA in two main situations: autoomsgind the GNOME
document model. The GNOME document model is currently uddeussion and design
and is going to provide a framework similar to OLEPfor free systems.

2.9 Extension languages

In addition to exporting functionality via CORBA, applitais are encouraged to use
a scripting language as their native extensibility mecéraniln this manner, programs
need not require that a separate process be started toldbetrogram with CORBA.
Scheme?] and Perlf] are the preferred extension languages for GNOME. We argyusi
the GNU Guile implementation of Scheme.

For example, the GNOME solitaire program has a C-based eane @ngine. Various
solitaire games are written as Scheme programs which déféneites for each game.

2.10 Drag and Drop

No desktop could be complete without drag and drop suppo@NOME offers drag and
drop capabilities in as many places as possible. Curre@tkt uses the Xde drag and
drop protocol. Programmers are hard at work implementiqgpasu for other protocols,
including the industry-standard Motif/CDE drag and droptpcol.

2.11 Documentation

The GNOME project is using DocBodK] as the source format for all documentation.
DocBook is an SGML application specifically targeted at ingtdocumentation for pro-
grams. We chose DocBook because it seems to be the formathaitbrightest future;
it provides many useful features to the documentation writed it is being adopted by
many free software projects.

Currently the API documentation that exists is written byda However, we are
investigating the possibility of extracting this docurragiun from the source code.



3 The GNOME desktop

The GNOME desktop is launched by tgeome-session program. If it is the first
time you use the GNOME desktop, a help browser, the paneltenflie manager will
be started for you. Otherwise, the programs that were athizdast time that you were
logged in will be launched.

The default GNOME file manager is a port of the ever-populaiitjht Commander
file manager to the GNOME environment (you can guess who whigeparagraph). It
has evolved to become a full desktop manager and graphieainfiinager. All of the
features you would expect from a file manager are there, &ofitAke power of Unix you
would expect is provided as well in, well, an intuitive way.

The GNOME help browser is an integrated help browsing progrased on HTML.
It renders Unix manual pages, GNU Info pages, and HTML paG&OME documen-
tation is provided in HTML format, which is automatically mgrated from DocBook
source.

The last default component of GNOME is the Panel; this progpaovides the user
with easy access to installed applications as well as a gkperpose container for var-
ious applets. The Panel is not only a boring menu facilitgaih embed widgets from
applications running in the desktop, and actually worky wiwsely with these other ap-
plications through CORBA. This makes the Panel one of tha magting and extensible
navigation systems available.

3.1 Interacting with a window manager

If X11 has done anything, it has given us a diverse colleatibwindow managers. Re-
quiring that people use a GNOME-specific window manager dibel asking for a low
market share.

However, interactions between GNOME applications and tiheow manager can be
fruitful, so a number of extensions to the existing windownaigers have been proposed,
and GNOME makes use of these extensions to create a betkdoglesivironment. The
plan is to have authors of free window managers incorpotaset extensions to make
their programs become GNOME-friendly.

It is important to note that GNOME applications do not dependthose window
manager extensions, but if they are available, they wiluged.

3.2 Automation through CORBA

GNOME applications will export their internal functionglivia CORBA, allowing other
applications or scripting languages with CORBA bindingsiiake use of their function-
ality.

For example, when a script is run, it can use CORBA to requesta GNOME
application be launched. It could then control the applices behavior and read, modify,
and extend the information controlled by the application.



In the example below, a hypothetical Perl script is used toimdate the GNOME
spreadsheet. The GNOME spreadsheet is launched if reqoiredreference to the cur-
rently executing spreadsheet is fetched. Then, a new engy¥ |3 created and filled
with information for making a chart. Finally, a chart objéxtcreated with a plot of the
information and Postscript output is returned in a varidbidurther Perl processing.

$spreadsheet = &gnome_find_impl ("Spreadsheet");
if ($spreadsheet) {
$sheet = $spreadsheet->new_empty_sheet ();
for ($i = 0; $i < 100; Si++) {
$sheet->set_value ("AS$i", $i);
$sheet->set_value ("B$i", $i * $i);
$chart = $sheet->new_chart ("A1..A100", "B1..B100");
$chart->set_style ("lines");
$psoutput = $chart->dump_postscript ();
}
}

# $ <-- That is a TeX Hack for Emacs font lock mode

4 Development

The GNOME development model is pretty close to other freenso€ projects; discus-
sion takes place on public mailing lists, and developerkepe in touch about important
changes by means of a private mailing list that has littles@oDevelopers get access to
commit their code directly to the CVS tree. Becoming a GNOM#eadoper is orders
of magnitude easier than becoming an accidental parengimsgghool; just write some
GNOME code and you get commit access. Anonymous access tG\d8rserver has
been in-place since just after the project started.

GNOME uses the standard set of GNU development utilitiesUGNtoconf —al-
lows us to easily deal with portability issues, and Ghiltomake takes care of writing
correct Makefiles with little intervention from us, the deymers.

The GNOME team at Red Hat Advanced Development Labs has ingpied a sys-
tem that does daily compilation and RPM packaging of the nadsanced GNOME
projects, fresh from the CVS server.

This has served two purposes. First, users have been givemaeto try GNOME on
a daily basis and to report bugs, and see how fast we can fix tBegond, it has helped
developers acquire the habit of committing working codehto€VS tree. Besides this,
a daily status report of the bugs in the code and commentseo@ MOME programs is
posted to the GNOME web site to inform developers of the knprablems in the code.
We expect to set up a bug tracking system soon to better thasle toroblems.



5 Current status

The GNOME desktop is currently usable; the desktop envieiris now functional and
a wide range of utilities have been written.

Effort is now directed towards the big applications and odba&Sed ORB. Some
projects include: Seth Alves’s and Chris Toshok’s word pssor, the presentations pro-
gram, and the spreadsheet program. The rest of the proidydtels that are missing
from free systems are slowly being addressed.

6 Availability

For more information on the GNOME project, you can visit the@VE web page:
http://www.gnome.org . GNOME is available in a number of ways:

e AnonCVS: Use CVS to grab GNOME from the following CVS address
‘pserver:anonymous@cvs.gnome.org:/debian/home/gnome cvs

e FTP:ftp://ftp.gnome.org/pub/gnome/devel for the latest snapshots
with precompiled binaries.

7 Acknowledgements

There are so many people that need to be acknowledged fousacontributions to the
GNOME project that we are going to leave someone out, we gjzalan advance.

Both Debian and Red Hat have backed up the GNOME effort simed¢ginning of
the project: Red Hat Advanced Development Labs is curresptgnding their resources
into developing GNOME. An endless list of GNOME hackers, ersd beta testers, doc-
umentation writers, artists, and friends have made the GEQ@kbject a reality. The
GIMP/Gtk+ authors have helped the project a lot, and bothak®owand VA-Research
have provided GNOME with network resources to hold our C\8ese The Instituto de
Ciencias Nucleares UNAM originally provided the FTP andlingilist service. Thanks
also to Ariel Faigon at SGI and SGI for lending Miguel an Indgchine to write free
software. Thanks to Nat Friedman for helping us with thisquegnd to Elliot Lee for
starting a new project on a daily basis.

References

[1] William Clinger, Jonathan Rees, et al. “RevideRleport on the Algorithmic Lan-
guage Scheme,” 1991.

[2] The Common Object Request Broker: Architecture and Hipae
tion. The Object Management Group (OMG), Revision 2.0, Jd95
(http://www.omg.org/corba )



[3] The Davenport Group, maintainers of the DocBook DTD:
http://www.oreilly.com/davenport/

[4] Drepper, Ulrich. “Internationalization in the GNU peajt”. Appeared in théro-
ceedings of the First Conference on Freely Redistributable Software, 1996.

[5] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, Gary Lstrdm. “Flick: A Flexi-
ble, Optimizing IDL Compiler”. Appeared in théroceedings PLDI ’97:
http://flux.cs.utah.edu/flux/flick/

[6] The free software philosophy:
http://www.gnu.org/philosophy/free-sw.html

[7] Gdk_Imlib: http://gnome.labs.redhat.com/imlib/

[8] GNOME Style Guide:
http://www.gnome.org/devel/sg

[9] GNU Image Manipulation Program (GIMP):
http://www.gimp.org

[10] The GNUstep project:
http://www.gnustep.org

[11] The Gtk+ toolkit:
http://www.gtk.org

[12] The K Desktop Environment:
http://www.kde.org

[13] The LessTif project:
http://www.lesstif.org

[14] Microsoft OLE2 programmer’s reference. Microsoft 85£1993.

[15] The Midnight Commander:
http://www.blackdown.org/mc

[16] Object Management Group (OMG):
http://www.omg.org

[17] Open Source Software Guidelines:
http://www.opensource.org/osd.html

[18] Larry Wall and Randal Schwartz, “Programming Perl,Reilly and Associates,
Inc, 1991.

[19] The Wine project:
http://www.winehg.com

10



[20] The XmHTML widget:
http://www.xs4all.nl/ripley/ XmHTML

11



