How | use WM

Tom Truscott

Research Triangle Institute
PO. Box 12194
RTP, NC 27709
(919) 541-7005

Starting up wm
The last line in my .profile is

exec wm

which puts me into the windomanagerso | am dways in it. When | need a real terminal (e.g. to run
‘talk’) | can type<wm-esc>z. Sincel go right into wm it is important that TERM be set correctBarlier
in my .profile | hae

export TERM

case "$TERM" in

sw|su) TERM='whatterm’;;
esac

So that if the TERM variable is su or sw (data&¥j John Menges’ whatterm program igaked to figure
things out. (Whatterm depends on the response characteristics of a dozen or so terAfmal® general
version, using a ‘responsecap’ database, is planned.) Whatterm is doonzédoto én ADM terminal
(unless it has the HERE-IS option) and alsitsfif the user is already in wm and and logging in to another
computer because ‘wm’ itself does not respond ty @acape sequences. It probably should, so whatterm
will work! Actually, nested imocations of wm, while amusing, are probably unnecessarily confusing.

Choosing window layout

That is largely a matter of inddual taste. My ‘#1” window is full-screen (except for the bottom
line), my #2 windwv is the top half of the screen and my #3 wiwde the bottom half (with an unused line
between them), and my #4 winalds just like #1. | am normally (99%) in the #1 windoand am generally
unavare of the existence of wm. But when | want to escape from the currentwvlradm change to win-
dow #4 to get a fresh screen (one wm nuisance is that it puts me back in my home directory on my home
machine). Oif | want split screens, say for debugging or file comparison, | can change tomw#2damd
then alternate between #2 and #3hink of having three winde layers, the #1 layethe #2/#3 layerand
the #4 layer (In reality, wm maintains a winde display orderand changing to a winawo puts that win-
dow on ‘top’, so there is not really a #2/#3 layeDna 66 ine display | bet things would be much nicer
Some people @ a wndow which covers all but the top line, so thean put a clock or periodic ‘uptime’
in the top line. (Note: towwindowsmust have an unused line between them or elseytbannot be used for
simultaneous displays.Also, some people change the wm prefix character to “W’ or “P’ so that ‘vi’ is
easier to use.

The undocumentedkperimentalkwm-esc>f (‘fit’) command is also handyFor example, suppose |
am in my #1 windev and type ‘make’. It might tale a while, so | would lile to svitch to another winde
and read nes. Butl would also lile to e the progress of the nekSol switch to a half-screen windo
and type «wmresc>f 1’, which relocates the #1 windoso tat it is no longer obscuredNow | can read
news and keep up with thériake” at the same timeThis can really jumble up the windows, but in this
case | can change back to #1 and dovanresc>f 1’ to make it full-screen again.

Window ‘‘ Performance’ Considerations

There are some important performance details to consiEiest, your terminal needs insert-
line/delete-line or scrolling ggon support for wm to work well on anything but full-screen wimslo In
particular my #2/#3 windows are sl@owvw without such support. The scrolling region is best because with
insert/delete-line scrolling in the #2 windaauses the #3 wineoto jitter up and dan. By the way, the
scrolling region capability is often omitted in nyalermcap entries, so you might need to put it in. Here is
the releant vt100 stuff, which is probably the only scrolling region support you are likely to find:

:SsCc=\E7:rc=\E8:cs=\E[%:i%d;%dr:sr=5\EM:

" ow

For now, al of “cs”, “sc”,

By all means you should makvndows be the full width of the screeiwithout that wm scrolls by
redraving the whole winda. The painful slavness is tolerable for smaller windows, and also dstefr
terminal speeds. My office terminal is at 4800 baud, and wm is okay at that sutes@ntd9200 is prob-
ably too slev for a windav that is full-screen except for the right-most column.

rc”, and “sr’ ' must be specified or wm will not use scrolling regions.

WM Enhancements

The “Hacking WM" document mentions geral possible enhancements. Suggestions for other
improvements to wm are welcome. Code foyaew improvements areven more welcome!

Hacking WM
(Obscure Detailsfor the Hard-Core User)

Tom Truscott

Research Triangle Institute
PO. Box 12194
RTP, NC 27709
(919) 541-7005

In Praise of Matt Lennon

Matt Lennon took an interest in Robert Jasobsenet wm distribtion, got it running here, and
talked others into trying it outFrankly the original version as too slav to be wsable, although it as
indeed interesting. (Perhaps most interesting of all was that Jacob had a version of wm running under
UNIX V6!) Matt reoganized the program internally and put in the first of a series of scrolling hacks (in
WMinsertln and WMdeleteln) The resulting program shares with the original wm a simplicity of design
that is important in anprogram, but particularly in a windomanager | think of the rgised wm as the
“A’ version. lam afraid a “B’ version will be along all too soon.

Praoblemswith Running Programs under WM

There are three common problems when running programs underOmm problem is that some
programs assume the screen is at least some minimum size, such as 24 lines and 80 Tgdicahpro-
grams betray themsasg by scribbling text intended for “line 24it random places on the screen, or by
dumping core after thénewwin” curses routine refuses to create a wimdbat encompasses that line.
Fixing such programs can be a chorat, dften one can just substitute ‘COLS’ for 80, ‘LINES-1’ for 23,
and so on.Rogomatic demands 24 lines so | hacked itverlay all lines >= LINES onto line LINES-1,
which is messy Wt tolerable.For programs beyond hope, tygavm-esc>z and run the program on the real
terminal.

A second problem is with programs that assume a specific terminal type, such as "vt100". -Wm cur
rently understands only the pseudo-terminal type "wmuvirt", so such programs cannot be run undter wm.
would be nice if wm could emulate an arbitrary terminal typkeen one could run wm on an ADM termi-
nal with one winder emulating a vt100 and another emulating ekffonix 4014. Of course, wmauld
need to support viewports into winds. Viewports are tiial compared to emulating 4014 graphicswho
eva.

A third problem is that some programs use getlogin to determine the log@r’'name, but under wm
getlogin fails since no one is logged in on the wimdooontrol terminal (pseudo-tty). The easiest fix is to
replace calls to getlogin with calls to safegetlogin:

/*

* Returns a user name such that uid(user name) == getuid().

* |f f easible, the session login name is used,

* but if the real uid has been changed (e.g. via 'su’)

* or if certain file descriptors a keen munged

*then a user name corresponding to the real uid is returned instead.
* Returns NULL if everything fails.

* Bewae! Clobbersstatic data from earlier calls to getpw*.

*

#include <pwd.h>

char *

safegetlogin()

{
register char *p;
register int uid;
register struct passwd *pwd;
static char namebuf[50];
extern char *getlogin();

uid = getuid();
p = getlogin();
/* cannot trust getlogin, so here is a security check */
if ('p || '(pwd = getpwnam(p)) || uid !'= pwd->pw_uid)
pP=0
/* if getlogin failed, try the real uid */
if (Ip && (pwd = getpwuid(uid)))
p = pwvd->pw_name;
if (p) {
strncpy(namebuf, p, sizeof(namebuf)-1);
p = namebuf;
}

return(p);

}

This fixes the ‘glaxy’ and ‘robots’ programs, foxample. V& keep this routine in /usr/local/liblocal.a and
link programs that call it with ‘-llocal’ Alas, one case that this misses is the commatmh‘ am i”. The
trade secret status of “wHgrecludes a clearer explanation.

Support for Fast Scrolling of any Rectangular Window

A (very) few terminals support general “scrolling rectangle$.hese are wonderful for wm because
then non-full-width windows scroll quicklyTerminfo already has thését window’ string capability
described in ‘tparm’ format, to set up a scrolling rectangleere is no such capability in termcap soa& ne
“sw” capability was imented, using the same format as terminfar example, for the HDS Concept 108
we have:

:SW=\EV%p1%' '%+%Cc%p3%’ '%+%Cc%p2%pl%-%'"%+%Cc%pa%p3%-%''%+%c:\
For the HDS 200 we he (sorry this is untested):
:SW=\E[%p1%{1}%+%d;%p2%{1}%+%d;%p3%{1}%+%d;%p4%{1}%+%dr:\

You dso need'sr” (scroll_reverse) for wm to use set_windo Wm assumes that the set_windaom-
mand mees the cursor to the rectangddlome position (upper left), that cursor motion commands work in
the rectangle, and that the motions are neddti the origin of the rectangle. If your terminal worksfelif
ently, and it probably will, you might hae o hack wm. Look for "SET_WINDOW" which, if defined,

causes code to be generated to support scroll rectangles.

LIBCURSES

Wm depends heavily on the underlying screen managementseftibocurses) for correctness and
efficieng. A number of changes were found to be needed in libcurses\o@morrectness. The major
efficieng/ problem has been that of piding fast scrolling. Libcurses itself does not support insert/delete
line or scrolling regions to provide fast scrollingVe decided not to put such support into libcurses,
because that was considered taeréaching, so insert/delete line and scrollingioas are handled within
special code in wm itself, and the libcurses windows are accordingty dig. WWm could support scrolling
regions more diciently (by not switching back and forth between full screen and window-sized regions on
evay newline). It could also handle certain non-full-width windows bettieor example to scroll a win-
dow that cwvers all but the rightmost column it could scroll all linegdlwed and then rednathe rightmost
column. Perhapthe termlib or other packages do that sort of thiakso, for non-full-width windows wm
could perhaps scroll twor nore lines at a time, or possiblyea wrap around to the top line rather than
scroll.

WM and TERMINFO

Wm can be compiled witha®d Curtis’ public domain ‘terminfo” library in addition to the usual
one (“Curses Classid. During compilation the TERMINFO preprocessor variable is defined if compila-
tion with terminfo curses is detected, so that appropriate code is generated. The termiafoor@nare
nicer than the classicewsion so wm uses the terminfo functions and variable names, and Curses Classic is
supported by redefinitions and emulation routines.

However, wm really should only be compiled with Curses Clasdibe terminfo version is sheer,
bigger buggier and does not support amdkeys. Terminfo also has more fundamental problems. It does
not provide support for the TERMCAP environment variable, and there is no aegsp wonstruct a ter
minfo binary file analogous to the 'wmvirt’ TERMCAP stringks a result wm cannot supportyater-
minfo-compiled applications program$Vhen (if) this becomes a problem there will be additional incen-
tive for wm to be able to emulate an arbitrary terminal (also‘pesblems with running programs under
wm”, above). Then,in conjunction with the 4.3 kernel support for wimdeizes, wm can dispense with
the TERMCAP variable and emulate whageterminal is desired, thus supporting both termcap and ter
minfo. (<wm-esc>t will still be needed for tip and cu.)

WM response sluggishness

An unfortunate current side-effect of wm is that certain normally resgotesiminal operations are
now sluggish. For example, if you cat a file and press <Interruptrerss lines will be printed before the
interrupt takes éfct. Othersimilar special characters are also handledlIgloThe reason is that wm runs
in rav mode, so such characters are tiostantly” handled in the &rnel. Insteadhey are passed to the
currently selected pseudosttyhich then interrupts or stops or whate But ary characters currently
gueued by wm for the userterminal are still printed(The script program has the same b#drabut it is
tolerable for the normal uses of that commanthere does not seem to be a good way around this prob-
lem. Wm$ aurrent approach is to

a) Onlyread a fev (currently 64) characters from each pseudo-tty at a timejold Earge queues from
wm to the real tty.

b) Have wm check the size of the output queue using the undocumented TIOCOUTQ ioctl, and delay
reading from the pseudo-ttys if the output queue is large.

C) Have wm reduce the read and queue sizes for a while after the user types Control-S.

The first two hacks keep the response to <Interrupt> at a tolerale [€hey aso keep the tty high ater
mark from being reached, which would put wm to sleep, which woulae makonse very sluggish indeed.
The last hack gies smewhat better response to Control-S.

This approach to wm sluggishness is quite,r® more tuning and better approaches to the problem
are possibilities. Also, the parametersédngeen tuned for a Gould 9050, which is quite a fast machine, and
the resulting extra cpuyolved might be intolerable on aAX. An easy ‘fix’ is to comment out the

-6-

TIOCOUTQ code in wm.c (you can probably just #undef TIOCOUTQ at the tém). might want to
remove the Control-S hack as well.

The‘.wmrc' File

The first line of .wmrc is the prefix charact@he remaining lines describe the configured wivglo
from bottom to top.(The last line describes the winddn which the user starts.) Each line consists of the
windowv name, the number of ws and columns, and the startingvrend column (zero inded). If the
number of rows (columns) is\@n as 2ro then that dimensiofflexes” to the height (width) of the screen,
which supposedly is useful when switching among terminals of different sizes.

Several users hee asked for the ability to specify an alternatshell” in a window. That could be
done by extending the .wmrc lines to include a command txdmeited in lieu of the shell. Other users
have requested the ability to set the shell prompts in a windependent &y, anong other thingsl do not
know how that might be done.

The“SNEAKYTERMCAP” Method

Ordinarily, when a windw changes size, wm blasts the wimdavith a shell command that sets
TERM and TERMCAP to indicate the wavindow’s sze. (Thisis the same shell command generated by
<wm-esc>t.) This not only produces cluttgit can also confuse non-shell programs running in that win-
dow. If your version of wm was compiled with SNEAKYTERMCAP definedybeer, a dfferent method
is used. The TERMCAPariable is set to a filename such as /tmp/WM.33445.1 and the file contains the
termcap capability string. Then, when a windchanges size the /tmp file is simplywéten. Butthere is
a scurity problem with this method (or withyanoommand that uses /tmp) and /tmp gets cluttered up with
lots of “WM’ " files. Itwould be better if the files wereskt in a subdirectory of each usembme directory
and if wm itself cleaned up dead temporary files (e.g. due to a system crash).

Browsing About in WM Windows

Some terminals v& exra memory so one can look back at text that scrollthefscreen. It wuld
be nice if wm provided that too. One hundred lines of scrolled typescript should be adéqpktesible
approach would be to typewm-esc>v (for ‘view’) to put the windav in browse mode.Then input to that
window is interpreted as requests to vaeotack and forth in the typescript, éikthe ‘vi’ scrolling com-
mands. Aw output to the real winde is held pending exit from brmese mode, which might be by typing
“:g”, at which time the windw is reset to its state on entry to browse mode. Of course, while awvisdo
in browse mode one can still switch between windowsenmeate, and kill windows, and so on.

All this can be implemented cleanly with about 100 lines of code scattered here and there (it has been
written), but what about x¢ searching and the ability to write parts of the typescript into UNIX files?
What about all the other nifty ‘vi' command&®hy not just run ‘vi' (or your &vaite viewing program) in
the bravse windev!? Well, here is wii not. Vi has to position itself at the end of the typescript in order to
provide a “seamless intemte’ to wm. Okay that's easy We rneed an “ignore first cledrkludge so that
when vi initially redraws the screen the wimdis not really redravn. Uh,well, wm already has kludges.

We reed to suppress the vi status linegamless intedce’ remember), say by displaying it instead in
wm’s datus areaEr, uhm. Yuck! Itcould be done, but it sure would be ughdas, wm does not yet sup-
port browse mode.

