User-L evel Window Managersfor UNIX

Robert J.K. Jacob

Naval Research Laboratory
Washington, D.C. 20375

ABSTRACT

Wm manages a collection of windows on a display terminal. Each witds its
own shell or other interacte gogram, running in parallel with those in the other win-
dows. Thispermits a user to conductveeal interactions with the system in parallel,
each in its own winde. The user can m@ from one windw to another re-position a
window, or create or delete a windoat any time without losing his or her place inyaof
the windavs. WIindows can oerlap or completely obscure one another; obscured win-
dows can be "lifted" up and placed on top of the other windows.

This paper describes Wwasuch a windev manager for UNIXTt is implemented as a
set of user processes, without modifications to the UNdX. Itshavs hav the sim-
ple, but well-chosen facilities provided by the original (Version 6) UNéXhkl are stiF
cient to supportvm. In addition, subsequent versionswai exploit features of thedenel
introduced into newer versions of UNIX to providster and more sophisticated windo
operations, still implemented entirely at the useelle

Introduction

This paper describes the design of a display winahanager for UNIX implemented entirely as a set
of user processes, without modifications to the UN&xnkl. ltshavs hav the simple facilities pndded
by the original (Version 6) UNIX kernel are figient to support such a windomanager In addition,
more recent versions of the windananager exploit features of therkel introduced into neweexsions
of UNIX to provide faster and more sophisticated operations in windows, still implemented entirely outside
the kernel.

This windav managerwm, provides a UNIX user the ability to conducwerl interactions in paral-
lel, each in a different windoon a &xt display terminal. The windows may be createdyado and tem-
porarily or permanently erased ayaime. The may also @erlap or completely obscure one anottzad
such hidden or partially hidden windows may be "lifted" and placed on top of the other windows as desired.
Figure 1 shows a snapshot ofsa session in progress.

User Interface

The notion of oganizing computer data spatially was propounded and exploited by Nichadme-Ne
ponte in the Spatial Data Management Syster8][2ln wm, howeve, atial cues are used only to specify
a montext for a dialogue. Once a windois slected, further interactions within that windoake use of
the power and abstraction of more eartional user interface techniqueseitelman [8] made good use of
display screen windows for a collection of parallel interactions with an INTERLISP sybtem.recently
several personal computers and workstationgehalopted this winde-oriented style of dialogue as their
principal mode of interaction. Other systems similar to the present meedsa been provided under
UNIX [4,7,9].

TUNIX is a trademark of Bell Laboratories.



Traditional user intedces for computers that handle parallel processes place all inputs and outputs in
one chronological stream, identifying the process associated with each, but interleaving thEhdata.
Berkeley job control facilities for UNIX provide a first attempt at improving this situation [5].

By contrast, a window-based user interface enables a user to manage a collection of dialogues by
associating a spatial location with each dialogue, in much the same waygamiees a desk. On a desk,
all input papers on all topics are not (one hopes) placed on a single pile in chronologicdlubndgher
they are divided into piles by topic. When input for a particular topic is vedeithe corresponding pile is
located, lifted, and placed on top of other papers, and the necessary work is done on tRatpitepic
may thus be associated with and remembered in terms of a location on the desk. Recent erndarical e
shaved that such a windeoriented user interface induced better user performance than a more traditional
scrolled message interface in a particular situatieoliing several parallel interactions [6].

Wm conducts seeral concurrent dialogues with a UNIX usdfach takes the form of a UNIX shell,
to which UNIX commands can bevgh and from which other interast programs can be initiatedcach
dialogue is conducted in a separate area of the screeimdow designated by the useAt any moment,
one of the windws is considered the current input wimgand all keyboard inputs (except fam com-
mands themsebs) are sent to the shell or program associated with thatweingéibany time (including in
the middle of typing a command in a window), the designation of the currentwimedyp be changed and
a dfferent dialogue begun or resumed. Outputs resulting from these dialogues will appear in their appro-
priate windows as tlyeare generated, gerdless of which windw is the current input winde. Output des-
tined for a portion of a windw that is obscured by another windavill appear wheneer that portion of
the windav is uncovered. Windows can be "piled" on one another ity saquence.

Wm was aiginally designed for use in an intelligent terminal that could communicate withate
computers simultaneoushEach dialogue with a different computer was associated with a windbe
method is equally applicable to a collection of dialogues, all with the same computer but on different topics.
Still, ary or dl of the present windows can run programs to conduct inteeadllogues with other com-
puters (such a®lnet).

Design for " Vanilla" UNIX

To implement a system of this sort, it is necessary for one user process to be able to manage a collec-
tion of other user processes and to mediate all of their inputs and oUfputbe inputs, it must act as a
switch, directing input from theeiyboard to different programs in response to user commaraighe pro-
gram outputs, it must place the output of each program in its correct position on the screen.

If adequate primities for creating and manipulating processes and for catching their inputs and out-
puts are preided by the operating system, a windmanager can be built entirely as a user prograie
original design of UNIX, with itgipe andfork mechanisms prddes a user the right primits to design
such a system in an glnt fashion without kernel modifications.

Wm initiates and manages its own collection of UNIX processes, including those run in response to
entered commandsAny conventional UNIX program can be used fromm, provided it does not maksg-
nificant assumptions about the nature of its input and outpitedethat is, it should treat input and output
from a pipe as equélent to input and output from a terminal or other source.

Wmruns a2n+2 parallel UNIX processes of four different types (wheis the number of windes
in use). The division into processes is dictated by the fact that the original t¢bt>¢all on an empty
pipe or input device causes a process to block until input becoraitsble. Hencethere is a separate
process for each pipe or device that must be read asynchronkasly such process contains a loop that
reads from its particular pipe or device, processes the input, and then waits for more. Figure 2 shows the
processes and pipes that compvise

The main process reads from andhits for input from the d&yboard. Inputconsisting of text is sent
to the shell process associated with the current wirahal also to thescrn process, described belpfor
echoing. Inputonsisting ofwm commands is interpreted lmgain, translated into one or more pririi
commands plus arguments, and serstta for execution. Simplechanges in the input command language
are thus localized imain. To change the name, input syntax, or prompt for a command, only the code in
main need be modifiedSince input commands are reduced to a somewhat more general set oferimiti



commands, some simplemeommands may be implemented entirelymiain as aliases for specific uses
or combinations of the existing primié ommands.

The scrn process handles all outputs to the scre&lhprocesses that want to affect the screen must
thus place requests to do so on a common pHeen reads these instructions from the pipe and enak
appropriate modifications to the screem commands that affect the screen layout, such as moving a
window, are placed on this pipe byain and handled bgcrn. Output text characters from the initiual
shell processes that belong in a wiwdwe also placed on this pipe along with a winddentifier and a bit
indicating whether the character should be displayed immediately or just remembered for the next time the
display is refreshedScrn then compares the desired configuration of the screenufies bontaining the
actual configuration and transmits the necessary updates.t

There is ashell process associated with each wiwddrhis is simply the standard UNI3h (or ary
other designated program}heseshell processes va ro direct access to the terminal, but run as eagti
of wm, connected by pipes, so that their inputs and outputs can be mediated. The input to each of these
processes is a pipe framain, snce main knows which windaev is the current input winde and can place
the typed input text on the pipe to the correspondi@t process. Alloutputs of theshell processes must
be sent tascrn to be displayed, but thhemust first be tagged with the name of the windo which they
belong.

To do this, each winde has ashmon process that monitors the output of the corresponshiety
process. Theutput of eactshell process is a pipe to a correspondshgion process. Eacltime output
appears on that pipshmon reads it, packages it with a header identifying its windmd then places it on
the common request pipedern.

Wm comprises about 1000 lines of C code—about 500 each fonalreandscrn processes and less
than 50 for theshmon process.

Remarksand Problemswith " Vanilla" UNIX

Each windev in wm emulates an individual glass teletydaputs appear in the bottom and scrofl of
the top of a winde. Since the standard input and output for all programs runrhyare really pipes, all
programs run undesm should treat their inputs and outputs simply as streams of characters, without dis-
tinctions between terminals and pipes. Taet that UNIX and most of its original programs permit a pipe
to be substituted for a terminal input or output stream is a@yaelaspect of UNIX that is crucial tom.
This obtains for most UNIX programs; theerform individual "building-block" functions and are thus
intended to be equally usable individually from the terminal or as filters connected to other programs to per-
form more comple tasks. Programthat try to determine whether thbaveaccess to a real terminal may
behae dfferently or @en refuse to run wittwm. For example,stty is meaningless when applied to a pipe
rather than a terminali will refuse to run from a pipe, arash will not allow job control if it cannot access
the terminal. (Howeer, note thatwm s really an alternate approach to controlling concurrent jobs.)

A very rudimentarydcility for supporting a whole-screen-oriented program isigea. ltcreates a
special temporary winag creates dermcap description of a "terminal” that occupies only the correspond-
ing area of the actual screen, and therviges that description and direct access to the terminal to the
screen-oriented program until the latter exits.

Sincewm operates with the terminal inwamode, it must preide for itself the input line editing
functions normally provided by the teletypewveri

Because of the architecture wi, there are no pipes that connect one wimdo another hence
there is no explicitdcility for communication between wings. Itcan be achied, havever, through the
file system.A program in one winde can append to a file while one in another windmmntinuously tries
to read from the end of that file.

TThe update algorithm is less sophisticated than the optimization performedcimssepackage [1], bt
curses was rot available in Version 6 UNIX. This update algorithm is also sainat easier to adapt to unusual
terminals, as seen belo



Terminal Dependencies

While the newer version afm usescurses to perform all terminal-dependent operations in a termi-
nal-independent fashion, terminal dependencies can be isolated fairly easiyitbout curses. All termi-
nal-dependent code in the originai is restricted to a collection of ivimple proceduresThey were
originally written separately for each type of terminal, butehdso been written in terms of the terminal-
independent interfacégrmcap, for systems that ha i.

The five procedures perform the following tasks:

ttyinit Performs ap necessary initialization for the terminal.

ttyclose Performs ap necessary closing for the terminal befama exits or suspends.
ttymov Moves the terminal cursor to avgn row and column.

clearscreen Clears the terminal screen.

clearline Clears from the cursor to end of the current line (not mandatory).

For each of sgeral common terminals, the definitions of these procedures comprise about 15 lines of code
altogether.

This approach isolates terminal dependencies sufficientlywiimatan also be adapted for use on
graphic displays by replacing the abqrocedures and making other minor changes. Such a versian of
has been written to produce output suitable for the standard UNIX plot filters (plus some added commands
for raster graphic displays) and used with a Genisco frarfierb Windows may be in various colors and
may use different fonts for their text.

Design for Version 4.2 UNIX

Berkeley Version 4.2 VAX UNIX provides ne features that makit possible to impree wm signifi-
cantly By using pseudo-terminals instead of pipes for interprocess communicatieral £¢ the problems
discussed ab@ dsappear In addition, the synchronous input/output multiplexing feature of th& ne
UNIX makes the former division offm into processes as dictated by the blocking read unnecegsary
revised version ofvm, then, solves manof the earlier problems and runs in a single process (plus the
users dhells). Itis, havever, less interesting and certainly less portable than the indialon. Agin, the
facilities are provided entirely in usewi# processes, without the need for kernel modifications.

This version ofvmreads from thedyboard and also from the pseudo-terminals associated with each
window, in around-robin, using the multipted read call(select). Keyboard input consisting of text is sent
to the pseudo-terminal associated with the current windidve pseudo-terminal dur itself handles echo-
ing (when enabled) and intraline editing, obviating the needrfoto duplicate these function&eyboard
input consisting ofvm commands is processed directlyxttaput is sent to the appropriate pseudo-termi-
nal. Outputirom the pseudo-terminals is read\, interpreted in terms of the cursor control commands
of a simple virtual terminal defined lm, and then added to the appropriate screen winidwo processing
by thecurses package [1].

This version ofvm comprises about 1000 lines of C code, all in a single process. Figure 3 shows the
architecture of the program.

Remar ks and Problemswith Version 4.2 UNI X

Since each windm is implemented with a pseudo-terminal, tlaetfthat a program is running in a
window rather than on a real terminal is transparent to most progr&pecifically most screen editors
and games may be used, atiy may be called to change characteristics such as echoing or line editing
individually for each winde. For example, note that one of the wimdoin Figure 1 is runningi, which
has adjusted itself to the windaize. Someprograms, haever, assume that their output devices are of
some minimum size; tiyawill not run well in very small windas. Also,programs that attempt to manipu-
late the controlling terminals of process groups will notkaproperly undewm. For this reasongsh can-
not currently be run in the individual windows insteadtof

It is generally not possible to m® a wndow while an interactie program (other than a shell) is run-
ning in it. First, this is necessary because, whena window is moved, wm sends a shell command to



change th@ERMCAP variable for the shell in that wineg to describe its n& size. A more fundamental
reason is that theurses library routines (sensibly) do not expect the terminal description to change while a
program is running, and so meko govision for checking for or adapting to such changes.

Since pseudo-terminals are a system-wide resource and are usually fixed in thartoel number
of windows that can be in use by all users at @me time is limited to the number of pseudo-terminals
made aailable towm.

A facility for communicating between winds is nav easy to preide. Sinceeach windw uses a
pseudo-terminal, andata sent to its sl@ peudo-terminal will appear in the window; and pseudo-termi-
nals are in the name space of the UNIX file system and thalalde to other processe§o smplify use
of this feature, when a windois created and a pseudo-terminal obtained for it, a link to the name of its
slave pseudo-terminal is created in the userirrent directory Any program inside or outsidem can then
write to or read from that file name without prearrangement.

Program Versions

These programs are written in C for use with UNIKhere are three principakksions:wm.v6,
wm.v7, and wm.v42. The first, as described al® runs under unmodified Version 6 UNIX on a PDP-11.
The code for thisersion was frozen and abandonedesa years ago, but it is stilvailable. Wm.v7 runs
under Version 7 UNIX, and the same code also runs onelB®rR.8 and also on a VAX on Begley 4.1
and 4.2.No changes in the source code are required between the PDP-11 and VAX, except that constants
for the maximum number and size of windows are limited bybiéahle memory on a PDP-11. Thisw
sion is similar in design taem.v6, which was described abg but has a number of imprements. The
newest \ersion,wm.v42, runs only under Beiey 4.2 on a VAX, as described in this papédtr uses the
select synchronous input/output multipdieg call, which is unique to 4.2, and also other features that are
found in some, but not all, versions of UNIX, such as pseudo-terminalsuessd. At this writing, this
version is not yet thoroughly tested on 4&n intermediate version for use with Versions 2.8 or 4.1 can
also be constructed by adapting some of the featunesnofd2 to wm.v7. For example, the use afirses
can certainly be adapted to 2.8; pseudo-terminalsvailatzde on some versions of 4.1; and soreesions
of 4.1 can also simulate a non-blocking read on a pseudo-terminal or a short time-out.

Availability
Three versions ofim are &ailable to interested researchers.
wm.v6 For Version 6 UNIX.
wm.v7 For Version 7 UNIX, also runs on Berkgl2.8, 4.1, and 4.2.
wm.v42  For Berkelgy 4.2 UNIX only (but has some features than can be retrofitteane7).

The code can be obtainedeothe Arpanet by sending a request to jacob@nrl-css. The author can also be
reached via uucp at ...!decvax!linus!nrl-css!jacob.

Conclusions

It is demonstrably feasible to provide a useful and efficient display wiminagement facility in
UNIX at the user beel, without support from kernel modifications. Such a facility caendoe govided for
the original Version 6 UNIX, although some impements are obtainable by exploiting featuresvigted
by more recent versions of UNIX.

Acknowledgments

I would like to hank Mark Cornwell, Rudy KrutaAlan Rarker and Mark Weiser for helpful discus-
sions of this work.

References
1. K. Arnold, “Screen Updating and Cursor Manent Optimizatiori,U niversity of California, Berl-
ley (1980).



R.Bolt, “Spatial Data Managemehf,echnical Report, Architecture Machine Group, Massachusetts
Institute of Technology (1979).

C.FE Herot, R. Carling, M. Friedell, and D. Kramlichi ‘Prototype Spatial Data Management Sys-
tem,” Computer Graphics 14(3), pp. 63-70 (1980).

M. Horton, personal communication (September 8, 1982).
W. Joy, “An Introduction to the C ShéllJ niversity of California, Berkelg (November 1980).

S. Murrel, “Computer Communication System Design Affects Group Decision MakiPgc.
Human Factorsin Computer Systems Conference, pp. 63-67 (1983).

R.Pike, “Graphics in Overlapping Bitmap Layer8CM Transactions on Graphics 2(2) (1983).

W. Teitelman, A Display Oriented ProgrammasrAssistant,”International Journal of Man-Machine
Sudies 11, pp. 157-187 (1979).

M. Weiser, C. Torek, R. Trigg, and R. Wood, “The Marylandintfon System; Technical Report
1271, Computer Science Department,udrsity of Maryland (1983).



