
User-Level Window Managers for UNIX

Robert J.K. Jacob

Naval Research Laboratory
Washington, D.C. 20375

ABSTRACT

Wm manages a collection of windows on a display terminal. Each window has its
own shell or other interactive program, running in parallel with those in the other win-
dows. Thispermits a user to conduct several interactions with the system in parallel,
each in its own window. The user can move from one window to another, re-position a
window, or create or delete a window at any time without losing his or her place in any of
the windows. Windows can overlap or completely obscure one another; obscured win-
dows can be "lifted" up and placed on top of the other windows.

This paper describes how such a window manager for UNIX† is implemented as a
set of user processes, without modifications to the UNIX kernel. Itshows how the sim-
ple, but well-chosen facilities provided by the original (Version 6) UNIX kernel are suffi-
cient to supportwm. In addition, subsequent versions ofwm exploit features of the kernel
introduced into newer versions of UNIX to provide faster and more sophisticated window
operations, still implemented entirely at the user level.

Introduction

This paper describes the design of a display window manager for UNIX implemented entirely as a set
of user processes, without modifications to the UNIX kernel. Itshows how the simple facilities provided
by the original (Version 6) UNIX kernel are sufficient to support such a window manager. In addition,
more recent versions of the window manager exploit features of the kernel introduced into newer versions
of UNIX to provide faster and more sophisticated operations in windows, still implemented entirely outside
the kernel.

This window manager,wm, provides a UNIX user the ability to conduct several interactions in paral-
lel, each in a different window on a text display terminal. The windows may be created, moved, and tem-
porarily or permanently erased at any time. They may also overlap or completely obscure one another, and
such hidden or partially hidden windows may be "lifted" and placed on top of the other windows as desired.
Figure 1 shows a snapshot of awm session in progress.

User Interface

The notion of organizing computer data spatially was propounded and exploited by Nicholas Negro-
ponte in the Spatial Data Management System [2,3]. In wm, howev er, spatial cues are used only to specify
a context for a dialogue. Once a window is selected, further interactions within that window make use of
the power and abstraction of more conventional user interface techniques.Teitelman [8] made good use of
display screen windows for a collection of parallel interactions with an INTERLISP system.More recently,
several personal computers and workstations have adopted this window-oriented style of dialogue as their
principal mode of interaction. Other systems similar to the present one have also been provided under
UNIX [4, 7, 9].

†UNIX is a trademark of Bell Laboratories.

- 1 -



Traditional user interfaces for computers that handle parallel processes place all inputs and outputs in
one chronological stream, identifying the process associated with each, but interleaving the data.The
Berkeley job control facilities for UNIX provide a first attempt at improving this situation [5].

By contrast, a window-based user interface enables a user to manage a collection of dialogues by
associating a spatial location with each dialogue, in much the same way one organizes a desk. On a desk,
all input papers on all topics are not (one hopes) placed on a single pile in chronological order, but rather
they are divided into piles by topic. When input for a particular topic is received, the corresponding pile is
located, lifted, and placed on top of other papers, and the necessary work is done on that pile.Each topic
may thus be associated with and remembered in terms of a location on the desk. Recent empirical evidence
showed that such a window-oriented user interface induced better user performance than a more traditional
scrolled message interface in a particular situation involving several parallel interactions [6].

Wm conducts several concurrent dialogues with a UNIX user. Each takes the form of a UNIX shell,
to which UNIX commands can be given and from which other interactive programs can be initiated.Each
dialogue is conducted in a separate area of the screen orwindow designated by the user. At any moment,
one of the windows is considered the current input window, and all keyboard inputs (except forwm com-
mands themselves) are sent to the shell or program associated with that window. At any time (including in
the middle of typing a command in a window), the designation of the current window may be changed and
a different dialogue begun or resumed. Outputs resulting from these dialogues will appear in their appro-
priate windows as they are generated, regardless of which window is the current input window. Output des-
tined for a portion of a window that is obscured by another window will appear whenever that portion of
the window is uncovered. Windows can be "piled" on one another in any sequence.

Wm was originally designed for use in an intelligent terminal that could communicate with several
computers simultaneously. Each dialogue with a different computer was associated with a window. The
method is equally applicable to a collection of dialogues, all with the same computer but on different topics.
Still, any or all of the present windows can run programs to conduct interactive dialogues with other com-
puters (such astelnet).

Design for "Vanilla" UNIX

To implement a system of this sort, it is necessary for one user process to be able to manage a collec-
tion of other user processes and to mediate all of their inputs and outputs.For the inputs, it must act as a
switch, directing input from the keyboard to different programs in response to user commands.For the pro-
gram outputs, it must place the output of each program in its correct position on the screen.

If adequate primitives for creating and manipulating processes and for catching their inputs and out-
puts are provided by the operating system, a window manager can be built entirely as a user program.The
original design of UNIX, with itspipe and fork mechanisms provides a user the right primitives to design
such a system in an elegant fashion without kernel modifications.

Wm initiates and manages its own collection of UNIX processes, including those run in response to
entered commands.Any conventional UNIX program can be used fromwm, provided it does not make sig-
nificant assumptions about the nature of its input and output devices−that is, it should treat input and output
from a pipe as equivalent to input and output from a terminal or other source.

Wm runs as2n+2 parallel UNIX processes of four different types (wheren is the number of windows
in use). The division into processes is dictated by the fact that the original UNIXread call on an empty
pipe or input device causes a process to block until input becomes available. Hencethere is a separate
process for each pipe or device that must be read asynchronously. Each such process contains a loop that
reads from its particular pipe or device, processes the input, and then waits for more. Figure 2 shows the
processes and pipes that comprisewm.

Themain process reads from and waits for input from the keyboard. Inputconsisting of text is sent
to the shell process associated with the current window and also to thescrn process, described below, for
echoing. Inputconsisting ofwm commands is interpreted bymain, translated into one or more primitive
commands plus arguments, and sent toscrn for execution. Simplechanges in the input command language
are thus localized inmain. To change the name, input syntax, or prompt for a command, only the code in
main need be modified.Since input commands are reduced to a somewhat more general set of primitive

- 2 -



commands, some simple new commands may be implemented entirely inmain as aliases for specific uses
or combinations of the existing primitive commands.

The scrn process handles all outputs to the screen.All processes that want to affect the screen must
thus place requests to do so on a common pipe.Scrn reads these instructions from the pipe and makes
appropriate modifications to the screen.Wm commands that affect the screen layout, such as moving a
window, are placed on this pipe bymain and handled byscrn. Output text characters from the individual
shell processes that belong in a window are also placed on this pipe along with a window identifier and a bit
indicating whether the character should be displayed immediately or just remembered for the next time the
display is refreshed.Scrn then compares the desired configuration of the screen to a buffer containing the
actual configuration and transmits the necessary updates.†

There is ashell process associated with each window. This is simply the standard UNIXsh (or any
other designated program).Theseshell processes have no direct access to the terminal, but run as captives
of wm, connected by pipes, so that their inputs and outputs can be mediated. The input to each of these
processes is a pipe frommain, sincemain knows which window is the current input window and can place
the typed input text on the pipe to the correspondingshell process. Alloutputs of theshell processes must
be sent toscrn to be displayed, but they must first be tagged with the name of the window in which they
belong.

To do this, each window has ashmon process that monitors the output of the correspondingshell
process. Theoutput of eachshell process is a pipe to a correspondingshmon process. Eachtime output
appears on that pipe,shmon reads it, packages it with a header identifying its window, and then places it on
the common request pipe toscrn.

Wm comprises about 1000 lines of C code−about 500 each for themain andscrn processes and less
than 50 for theshmon process.

Remarks and Problems with "Vanilla" UNIX

Each window in wm emulates an individual glass teletype.Inputs appear in the bottom and scroll off
the top of a window. Since the standard input and output for all programs run bywm are really pipes, all
programs run underwm should treat their inputs and outputs simply as streams of characters, without dis-
tinctions between terminals and pipes. The fact that UNIX and most of its original programs permit a pipe
to be substituted for a terminal input or output stream is an elegant aspect of UNIX that is crucial towm.
This obtains for most UNIX programs; they perform individual "building-block" functions and are thus
intended to be equally usable individually from the terminal or as filters connected to other programs to per-
form more complex tasks. Programsthat try to determine whether they hav eaccess to a real terminal may
behave differently or even refuse to run withwm. For example,stty is meaningless when applied to a pipe
rather than a terminal,vi will refuse to run from a pipe, andcsh will not allow job control if it cannot access
the terminal. (However, note thatwm is really an alternate approach to controlling concurrent jobs.)

A very rudimentary facility for supporting a whole-screen-oriented program is provided. It creates a
special temporary window, creates atermcap description of a "terminal" that occupies only the correspond-
ing area of the actual screen, and then provides that description and direct access to the terminal to the
screen-oriented program until the latter exits.

Sincewm operates with the terminal in raw mode, it must provide for itself the input line editing
functions normally provided by the teletype driver.

Because of the architecture ofwm, there are no pipes that connect one window to another, hence
there is no explicit facility for communication between windows. It can be achieved, however, through the
file system.A program in one window can append to a file while one in another window continuously tries
to read from the end of that file.

†The update algorithm is less sophisticated than the optimization performed in thecurses package [1], but
curses was not available in Version 6 UNIX. This update algorithm is also somewhat easier to adapt to unusual
terminals, as seen below.

- 3 -



Terminal Dependencies

While the newer version ofwm usescurses to perform all terminal-dependent operations in a termi-
nal-independent fashion, terminal dependencies can be isolated fairly easily even without curses. All termi-
nal-dependent code in the originalwm is restricted to a collection of five simple procedures.They were
originally written separately for each type of terminal, but have also been written in terms of the terminal-
independent interface,termcap, for systems that have it.

The five procedures perform the following tasks:

ttyinit Performs any necessary initialization for the terminal.

ttyclose Performs any necessary closing for the terminal beforewm exits or suspends.

ttymov Moves the terminal cursor to a given row and column.

clearscreen Clears the terminal screen.

clearline Clears from the cursor to end of the current line (not mandatory).

For each of several common terminals, the definitions of these procedures comprise about 15 lines of code
altogether.

This approach isolates terminal dependencies sufficiently thatwm can also be adapted for use on
graphic displays by replacing the above procedures and making other minor changes. Such a version ofwm
has been written to produce output suitable for the standard UNIX plot filters (plus some added commands
for raster graphic displays) and used with a Genisco frame buffer. Windows may be in various colors and
may use different fonts for their text.

Design for Version 4.2 UNIX

Berkeley Version 4.2 VAX UNIX provides new features that make it possible to improve wm signifi-
cantly. By using pseudo-terminals instead of pipes for interprocess communication, several of the problems
discussed above disappear. In addition, the synchronous input/output multiplexing feature of the new
UNIX makes the former division ofwm into processes as dictated by the blocking read unnecessary. A
revised version ofwm, then, solves many of the earlier problems and runs in a single process (plus the
user’s shells). It is, however, less interesting and certainly less portable than the initial version. Again, the
facilities are provided entirely in user-level processes, without the need for kernel modifications.

This version ofwm reads from the keyboard and also from the pseudo-terminals associated with each
window, in around-robin, using the multiplexed read call(select). Keyboard input consisting of text is sent
to the pseudo-terminal associated with the current window. The pseudo-terminal driver itself handles echo-
ing (when enabled) and intraline editing, obviating the need forwm to duplicate these functions.Ke yboard
input consisting ofwm commands is processed directly; text input is sent to the appropriate pseudo-termi-
nal. Outputfrom the pseudo-terminals is read bywm, interpreted in terms of the cursor control commands
of a simple virtual terminal defined bywm, and then added to the appropriate screen window for processing
by thecurses package [1].

This version ofwm comprises about 1000 lines of C code, all in a single process. Figure 3 shows the
architecture of the program.

Remarks and Problems with Version 4.2 UNIX

Since each window is implemented with a pseudo-terminal, the fact that a program is running in a
window rather than on a real terminal is transparent to most programs.Specifically, most screen editors
and games may be used, andstty may be called to change characteristics such as echoing or line editing
individually for each window. For example, note that one of the windows in Figure 1 is runningvi, which
has adjusted itself to the window size. Someprograms, however, assume that their output devices are of
some minimum size; they will not run well in very small windows. Also,programs that attempt to manipu-
late the controlling terminals of process groups will not work properly underwm. For this reason,csh can-
not currently be run in the individual windows instead ofsh.

It is generally not possible to move a window while an interactive program (other than a shell) is run-
ning in it. First, this is necessary because, whenever a window is moved, wm sends a shell command to

- 4 -



change theTERMCAP variable for the shell in that window, to describe its new size. A more fundamental
reason is that thecurses library routines (sensibly) do not expect the terminal description to change while a
program is running, and so make no provision for checking for or adapting to such changes.

Since pseudo-terminals are a system-wide resource and are usually fixed in number, the total number
of windows that can be in use by all users at any one time is limited to the number of pseudo-terminals
made available towm.

A facility for communicating between windows is now easy to provide. Sinceeach window uses a
pseudo-terminal, any data sent to its slave pseudo-terminal will appear in the window; and pseudo-termi-
nals are in the name space of the UNIX file system and thus available to other processes.To simplify use
of this feature, when a window is created and a pseudo-terminal obtained for it, a link to the name of its
slave pseudo-terminal is created in the user’s current directory. Any program inside or outsidewm can then
write to or read from that file name without prearrangement.

Program Versions

These programs are written in C for use with UNIX.There are three principal versions:wm.v6,
wm.v7, and wm.v42. The first, as described above, runs under unmodified Version 6 UNIX on a PDP-11.
The code for this version was frozen and abandoned several years ago, but it is still available. Wm.v7 runs
under Version 7 UNIX, and the same code also runs on Berkeley 2.8 and also on a VAX on Berkeley 4.1
and 4.2.No changes in the source code are required between the PDP-11 and VAX, except that constants
for the maximum number and size of windows are limited by the available memory on a PDP-11. This ver-
sion is similar in design towm.v6, which was described above, but has a number of improvements. The
newest version,wm.v42, runs only under Berkeley 4.2 on a VAX, as described in this paper. It uses the
select synchronous input/output multiplexing call, which is unique to 4.2, and also other features that are
found in some, but not all, versions of UNIX, such as pseudo-terminals andcurses. At this writing, this
version is not yet thoroughly tested on 4.2.An intermediate version for use with Versions 2.8 or 4.1 can
also be constructed by adapting some of the features ofwm.v42 to wm.v7. For example, the use ofcurses
can certainly be adapted to 2.8; pseudo-terminals are available on some versions of 4.1; and some versions
of 4.1 can also simulate a non-blocking read on a pseudo-terminal or a short time-out.

Av ailability

Three versions ofwm are available to interested researchers.

wm.v6 For Version 6 UNIX.

wm.v7 For Version 7 UNIX, also runs on Berkeley 2.8, 4.1, and 4.2.

wm.v42 For Berkeley 4.2 UNIX only (but has some features than can be retrofitted towm.v7).

The code can be obtained over the Arpanet by sending a request to jacob@nrl-css. The author can also be
reached via uucp at ...!decvax!linus!nrl-css!jacob.

Conclusions

It is demonstrably feasible to provide a useful and efficient display window management facility in
UNIX at the user level, without support from kernel modifications. Such a facility can even be provided for
the original Version 6 UNIX, although some improvements are obtainable by exploiting features provided
by more recent versions of UNIX.

Acknowledgments

I would like to thank Mark Cornwell, Rudy Krutar, Alan Parker, and Mark Weiser for helpful discus-
sions of this work.

References

1. K. Arnold, “Screen Updating and Cursor Movement Optimization,” University of California, Berke-
ley (1980).

- 5 -



2. R.Bolt, “Spatial Data Management,” Technical Report, Architecture Machine Group, Massachusetts
Institute of Technology (1979).

3. C.F. Herot, R. Carling, M. Friedell, and D. Kramlich, “A Prototype Spatial Data Management Sys-
tem,” Computer Graphics 14(3), pp. 63-70 (1980).

4. M. Horton, personal communication (September 8, 1982).

5. W. Joy, “An Introduction to the C Shell,” University of California, Berkeley (November 1980).

6. S. Murrel, “Computer Communication System Design Affects Group Decision Making,” Proc.
Human Factors in Computer Systems Conference, pp. 63-67 (1983).

7. R.Pike, “Graphics in Overlapping Bitmap Layers,”ACM Transactions on Graphics 2(2) (1983).

8. W. Teitelman, “A Display Oriented Programmer’s Assistant,”International Journal of Man-Machine
Studies 11, pp. 157-187 (1979).

9. M. Weiser, C. Torek, R. Trigg, and R. Wood, “The Maryland Window System,” Technical Report
1271, Computer Science Department, University of Maryland (1983).

- 6 -


