
The Maryland Window Library

Chris Torek

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT

There are many applications for windows, but the implementation of window soft-
ware is not an easy task.The job can be considerably simplified by eliminating some of
the capabilities of a full system, for example, requiring that windows do not overlap, but
this reduces the usefulness of the result.This paper describes the University of Maryland
Window Library, an implementation that supports a very complete character-based win-
dow system.

- 1 -

1. Intr oduction

What exactly is a window? It is merely a rectangular region that can display text. In fact, it is very much like

a standard terminal’s display. Howev er, since it exists as a subarea of a real display, it can be moved around, or cov-

ered by other windows. Windows can never be bigger than the real display.

One useful analogy for windows is glass over a room full of text. This room is called the buffer. The buffer

can be bigger than the window. Howev er, only the area that can be seen through the window is visible.

Tw o separate windows can look into the same room (buffer). Thesame room is revealed through both win-

dows, but not necessarily the same part of that room.These windows are called "linked windows" although "linked

buffers" might have been a better phrase.

Thus there are two basic "parts" to a window: its window descriptor (its position and size); and its text buffer

or textbuf (holding the text to be displayed within the window). It is also useful to have a portion of a window for

non-textual information. This is called the winbuf, or "window buffer". Normally the winbuf contains only "glass"

(empty space), but it can be written on.For example, an outline, or frame, may be written onto the glass, to show

how much space is available within the window (see Figure 1).

+--------------+
| |
| Some text |
| in a window |
| |
+--------------+

Figure 1: Framed window

Figure 1 shows a sixteen by six window with a frame. (The frame characters shown are those used on most

displays. Ondisplays that have some graphics capability, often the frames are cute little corners and sides that join

together, giving the window a very solid appearance.) The text is in the text buffer, and the frame in the window

buffer. This window has a descriptor indicating that the window is sixteen characters across by six characters high,

and points to the window’s winbuf and text buffer. The text buffer contains two blank lines, the words "Some text"

- 2 -

on the third line, the words "in a window" on the fourth line, and two more blank lines.The winbuf contains the

frame characters, with the inside of the winbuf being "glass" that displays the text buffer.

+-------------------+
| |
| |----+
| | |
+-------------------+ |

| |
+-----------+

Figure 2: Overlapping windows

Windows can overlap. InFigure 2 two windows overlap. Theonly difference between overlapped characters

and non-overlapped characters is that overlapped characters are invisible. If a window is covered, it can be brought

to the "front" (where it will cover whatever used to cover it). Windows may also be hidden to make them totally

invisible. Hidinga window that covers others will expose the others: hiding the upper window in Figure 2 would

make the lower one completely visible.Hiding a window has no effect on the operations that can be performed on

it; one can’t see the results, however, until the window is unhidden.

In addition to windows, there is a single "box" that may be turned on. It is a hollow rectangular region on the

display that is made of inverse video characters. It can be used either to outline a window, or as a roving block cur-

sor. As a window outline, the box can be used to display where a window may be created or moved. As a cursor,

the box can be used with a mouse or a bitpad as a pointer for selecting windows.

2. What’s in a window?

2.1. Cursors

- 3 -

Like a terminal, a window needs a cursor. The window’s cursor shows where the next character will be placed

within that window, though characters are actually written into the text buffer. The cursor is normally visible as a

blinking block. It can be turned off if desired.

Since the window actually has two pieces, the winbuf and the textbuf, it also has more than one cursor. The

normal cursor ("window cursor") is the one just described.There are two others: theaux cursor and the buffer cur-

sor. The aux cursor and the buffer cursor will be discussed later; for now it is enough to say that they are never visi-

ble, and that all three cursors are mutually independent. In this document, "the cursor" refers to the window cursor.

2.2. Text

Characters within a window can be in any combination of four modes: bold, underscored, blinking, and

reverse video.There is a "current mode" associated with each window. This is the mode with which future charac-

ters will be printed. In addition, there is the "glass factor" for characters within the winbuf: arethey real characters,

or are they just empty slots through which the text buffer should be displayed? Frame characters are not glassy; the

rest of the winbuf is normally filled with glassy blanks.The only way to put things into the winbuf is with the aux

cursor or one of the special functions, e.g., frame window.

2.3. Text Buffers vs. Window Buffers

A window buffer, as stated earlier, is normally just "glass" through which the text buffer is displayed.How-

ev er, it is possible to write characters, such as those making up a frame, into the winbuf. Thesecharacters then

obscure some of the characters in the text buffer. It is also possible to write modes into the winbuf. Thesemodes

can be considered "tinted glass":they affect the display of characters being viewed, though the characters them-

selves are not changed.For example, if inverse video has been "painted" onto the "glass", all the characters in the

text buffer under that paint are displayed in inverse video. If the glass is wiped clean of its inverse video paint, the

characters will be restored to normal. The modes on the glass are exclusive or’ed with those in the text buffer.

- 4 -

Te xt buffers also have cursors, namely the "buffer cursor". In linked windows, where two window descriptors

share a text buffer, there is only one buffer cursor. In other words, the buffer cursor is shared along with the text

buffer.

2.3.1. Margin Settings and the Aux Cursor

Window buffers also have margin settings. These are mainly used internally to keep the window cursor from

overwriting the frames (if there are any), but can be set if desired.Margins determine the amount of glass in the

winbuf. Anything outside the margins is strictly off-limits; the space inside the margins is the glass.However,

unwritable margins would not be particularly useful.The aux cursor is permitted to roam over the entire winbuf. It

can be used to print characters directly into the winbuf. Any character in the winbuf will take precedence over the

character underneath it in the text buffer. Essentially, the aux cursor writes on the glass.

While the aux cursor can be used to write into the winbuf, it can also be used in a sneaky way to "un-write"

characters: theaux cursor is permitted to erase from the glass. Erasing a character from the winbuf re-exposes the

character underneath in the text buffer. Tinted glass is created by erasing with a mode other than normal (i.e.any

combination of blinking, bold, underscored, and reverse video).

Te xt buffers do not have margin settings. No part of the text buffer is protected. Quite often, however, some

of the text buffer is not visible.In a typical framed window, the entire top and bottom lines of the buffer, and the left

and right edges, are not visible, since they are covered by the frame characters. (Note that since the aux cursor could

at any time erase part of the frames, they must remain invisible until explicitly exposed. They can’t be automatically

"moved down and right".) Figure 3 should clear some of the mud.

- 5 -

A window

+------------------+
|his is the second |
|ne, third line, fo|
|th line,... |
+------------------+

and its text buffer

XXXXXXXXXXXXXXXXXXXX
This is the second l
ine, third line, fou
rth line,... Y
ZZZZZZZZZZZZZZZZZZZZ

Figure 3: A window and buffer

2.3.2. Operations

Since a buffer can be larger than its window, there are "buffer operations" and "window operations". Ingen-

eral, window operations deal with the visible portion of the text buffer, and in many cases with the glass through

which said text is viewed. Buffer operations deal exclusively with the text buffer, and are not limited to the visible

portions1. Figure 4 shows what happens when a line delete is performed as both a window operation and a buffer

operation on a window that is smaller than its buffer.

1"Visible portions" can include covered or hidden portions."Covered" is used to describe windows or characters that are obscured by other
windows. "Hidden"is used to describe windows not displayed at all by specific request. The visible portion of a window’s textbuf is the area that
is inside the window’s margins; this is irrespective of whether the window is hidden and/or covered.

- 6 -

Window Buffer Window Buffer

+------+ 0123456789 +------+ 0123456789
|CDEFGH| ABCDEFGHIJ |CDEFGH| ABCDEFGHIJ
|MNOPQR| KLMNOPQRST |MNOPQR| KLMNOPQRST
|WXYZab| UVWXYZabcd |WXYZab| UVWXYZabcd
+------+ efghijklmn +------+ efghijklmn

(delete line from window) (deleteline from buffer)

+------+ 0123456789 +------+ 0123456789
|CDEFGH| ABCDEFGHIJ |CDEFGH| ABCDEFGHIJ
|WXYZab| KLWXYZabST |WXYZab| UVWXYZabcd
| | UV cd |ghijkl| efghijklmn
+------+ efghijklmn +------+

Figure 4: Window and Buffer Operations: Line Delete

When the cursor position is relevant to the operation, window operations are done at the window cursor, and

buffer operations at the buffer cursor. Only two operations (aux print and aux read) are done at the aux cursor posi-

tion.

2.4. Scrolling

The real reason for having separate text buffers and window buffers is to allow the storage of more text than is

visible. Thatis, buffers can be much larger than the window through which they are viewed. Thismeans that a win-

dow can be moved over the buffer. To go back to the room-of-text analogy, the wall is flexible, and the glass of the

window can be pulled around on it.In the window library, moving the window over its text buffer is called

scrolling. Thusyou can scroll a window up, down, left, or right, over its buffer. There are limits, however: the

amount of scrolling permitted depends on just how much more space there is in the buffer than the window. You

can’t pull the glass past the edge of the wall.

The more conventional definition of scrolling is moving the existing text upward or downward, discarding one

line at the top or bottom, and making room for new text. Thewindow library provides this by making an exception

to the scrolling limits. If the window is scrolled past the end of the buffer, the buffer is "extended" one line at the

- 7 -

bottom, and a line is "erased" from the top, making the window fit once again. (Theactual algorithm is to copy the

text upward, keeping the window at the bottom of the buffer.) A similar exception is made for scrolling past the

beginning of the buffer. This action (moving the text upwards or downwards, losing a line off the top or bottom) is

called "scrolling the buffer", and may be done directly, without moving the window past the edge of the buffer.

Windows automatically scroll when necessary. When this happens, the number of lines scrolled is controlled

by the window’s "popup". Popupdefaults to one, but can be set anywhere from zero to the size of the window.

Scrolling byn lines (n > 1) is exactly equivalent to scrolling by one linen times. Scrollingby zero lines is a special

case. Itis not scrolling at all.Rather, the cursor is brought to the top of the window and the top line is cleared.

Each time the cursor advances to the next line, that line is also cleared.When the cursor reaches the bottom of the

window, the process is repeated. This is much faster on some terminals, but tends to be confusing.

2.5. Printing Text

There are three ways to print text into a window. The first is to print at the window cursor, the second to print

at the buffer cursor, and the third to print at the aux cursor. The first and second are generally more useful than the

third, and have less "drastic" effects.

The aux cursor can be anywhere within the window buffer, and characters printed with it are required to have

a mode. Thismode includes (in addition to the standard four mode bits) the "glassiness" information.The character

being printed is not interpreted in any way, but simply shoved onto the glass. If the character is not standard ASCII

(codes 32 to 126 decimal), the results are terminal-dependent. Some terminals use special codes for the window

frame characters, and look for such codes; others do not and may end up clearing the screen, repositioning the cur-

sor, or doing other undesirable things. Therefore, the aux cursor must be used very carefully.

Both the window cursor and the buffer cursor check the character being printed, and take special actions for

non-ASCII characters. Most of these codes are ignored. The following are not:

BELL

ASCII 7, or bell, rings the terminal’s bell. If desired, this may be set to flash the terminal’s screen instead,

- 8 -

providing that the terminal has this capability. Visible bells are often nicer in a crowded working environ-

ment.

BS ASCII 8, or backspace, moves the cursor backwards one character. If the cursor is at its leftmost permitted

column, it does not move.

TAB ASCII 9, tab, moves the cursor forward one tab stop.Tab stops are set at every eight columns.If there are no

remaining tab stops, the cursor is moved to the rightmost column.

LF ASCII 10, linefeed, moves the cursor down one line without changing its column.(If CR/LF mapping is

turned on, it moves it to the leftmost column.) If the cursor is on the bottom line, the window is scrolled. If

this is the buffer cursor, then one line at the top of the buffer is thrown away, and a new blank2 line is intro-

duced (i.e. the buffer is scrolled). If this is the window cursor, then the window is scrolled by its popup.

CR ASCII 13, carriage return, moves the cursor to the leftmost column.(If CR/LF mapping is turned on, it also

performs a linefeed).

For the window and buffer cursors, autowrap and CR/LF mapping can be turned on and off. Autowrap means

that when a character is written in the last column of the window or buffer, it is wrapped to the next line, as if a car-

riage return and line feed had been printed. This mode defaults on.CR/LF mapping makes both carriage return and

line feed go to the first column of the next line; i.e., either code performs the actions normally done by both.This

mode defaults off. The aux cursor always wraps, and, upon reaching the last column of the last line, wraps to the

first column of the first line.Since it does not translate special codes, it ignores CR/LF mapping. It should not nor-

mally be used to print CRs or LFs.

3. UpdateOptimization

2The blanks introduced are in the current mode of the window; i.e.if the current mode is inverse video, a line of inverse video blanks is
made. Thisis true for all functions that introduce blanks in the buffer.

- 9 -

The Maryland Window Library keeps track of what the terminal’s screen looks like, and when asked to update

("refresh") the screen, attempts to do it with the greatest possible speed.If a section of lines on the current screen

matches a section on the desired screen, line insert and delete operations may be done to move the old lines to their

new position. If subsections of an old line match those of a new one, insert and delete character may be used.Any

number of arbitrarily complex operations may be done between screen refreshes; the update is computed at refresh

time.

4. SignalHandling

Since window display mode turns on many special Unix3 tty modes, it needs to take special consideration of

signals that normally cause it to stop or exit. (For more information on signals, seesignal(2) andjobs(3j) in the

Unix Programmer’s Manual [Joy et al 81].) TheMaryland Window Library uses the job control routines provided in

Berkeley 4.1 Unix. Since many Unix systems don’t hav ejob control, the actual calls to these routines are made only

if permitted by the programmer. If signal handling is not enabled, it is the programmer’s job to manage the Unix

signals. Signalmanagement is not always easy, so if enabled, the window library will provide default signal han-

dlers for those signals likely to occur, namely SIGINT and SIGTSTP. SIGINT is the interrupt signal (generated with

the DEL key). Thedefault handler for this signal exits after restoring the initial terminal modes. SIGTSTP is the

terminal stop signal (generated with control-Z). The default handler for this signal cleans up the terminal settings,

suspends the process, and upon resumption re-initializes the terminal to windows mode.4

Enabling signal handling is done with theWinit call (described later). If at all possible, it is recommended

that signal handling be enabled. If the default signal handlers are not desired, signal handling should be enabled

anyway, and the handlers changed to new functions viasigset.

If the target operating system does not have the jobs library, then there are two alternatives. Oneis to write a

jobs library simulator (see Appendix 3); the other to not use it.In either case the functionssigset, sighold, sigrelse,

3Unix is a trademark of Bell Laboratories.
4I chose not to catch SIGQUIT since core dumps are handy for debugging. Besides,one can always callsigset (SIGQUIT, Wexit);.

- 10 -

andsigignoremust be provided. If the functions are not being used, they may be empty (e.g.sigset () {}).

5. Window Library Functions

This section describes the actual functions provided by the Maryland Window Library. All return a value.

Most return zero if they succeed; exceptions are listed.To compile with the library, #include the file <local/win-

dow.h>, and include "−lwinlib −ljobs −ltermlib" when making the executable. (SeeAppendix 4 for sample pro-

grams.) Thefirst four functions listed are those for initializing, suspending, and cleaning up; the remainder are in

alphabetical order. Note: several functions "clip" their values. Thismeans that if they are given out-of-range val-

ues, the nearest value that is in range is used.

The window library provides several types, macros, and variables. Themain type isWin, and is the window

descriptor structure. There is also a "current" window, calledCurWin , but it is in no way special; it is provided for

convenience only. It is affected only by the functionsWopen, Wlink , Wclose, Wcloseall, Wfind , and Wboxfind.

The type, macro, and variable definitions are listed in Appendix 1.Note: bold text indicates exact strings.Under-

scored text indicates arguments that are to be filled in.

Winit (settings, nomagic)
struct sgttyb *settings;
int nomagic;

Initializes the window system, clearing the screen and setting the tty modes.Normally, both settings andnomagic

should be given as zero. To resume a suspended session, whereWinit has already been called,settings may be

given as (struct sgttyb *) 1. If special tty mode settings are desired,settings can be the address of a presetstruct

sgttyb structure (seestty(2), gtty(2)). (Baudrate will be replaced with the actual baud rate of the terminal.)Unless

signal handling is not desired (or not necessary, e.g. in raw mode)nomagic should be given as zero. Otherwisesig-

nal handling will not be enabled.A value of zero will setWsuspendto catch SIGTSTP andWexit to handle SIG-

INT.

- 11 -

Winit returns zero if the window package can be run on the terminal.If Winit does not return zero, nothing

has been done, and none of the other functions should be called.(Winit will return the same value if called again,

so if it said "Ok" once it won’t change its mind.)

Wsuspend ()

Suspends the process by callingWcleanup, sending SIGTSTP, and then callingWinit (1, 1). This is the standard

way to handle control-Z.

Wcleanup ()

Cleans up the terminal settings to the way they were whenWinit was called. Thismust be done before exiting, or

before giving up control of the terminal (e.g. to a subshell).

Wexit (code)
int code;

CallsWcleanupandexit (code). This should be used instead ofexit unlessWcleanuphas already been called.

Ding ()

Rings the terminal’s bell. Thisis normally just called when control-G (bell) is printed, but it can be called directly if

desired. Ifthe variableVisibleBell is nonzero, and the terminal supports it, this will flash the terminal’s screen

instead.

Max (a, b)

This is a macro which expands to

((a) > (b) ? (a) : (b))

which is the larger of the two arguments.

- 12 -

Min (a, b)

This is a macro which expands to

((a) < (b) ? (a) : (b))

which is the smaller of the two arguments.

WAcursor (w, row, col)
Win *w;
int row, col;

Sets the position of the window cursor. The position (0, 0) is as far left and up as the window cursor can get over the

text buffer; this function may scroll the window to get to the specified position. The name of this function stands for

"Window Absolute cursor move", meaning move the window cursor to an absolute coordinate, where "absolute"

means measured from as far left and up as possible.To move only within the window (where (0, 0) is the upper left

corner inside the margin settings), useWWcursor . Row andcol are clipped to be within the window.

WAread (w, charonly)
Win *w;
int charonly;

Reads back a character and (unlesscharonly is set) its mode from window w’s winbuf at the aux cursor. The aux

cursor is then advanced, wrapping from the last character of the last line to the first character of the first line if nec-

essary. SeeWCHAROF andWMODEOF .

WBclear (w, howto)
Win *w;
int howto;

Clears (sets to blanks) the text buffer attached to window w. If howto is zero, the buffer is cleared from the buffer

cursor to the end of the buffer, including the character under the cursor; if one, from the beginning of the buffer to

the cursor, not including the character under the cursor; if two, the entire buffer is cleared. Other values are treated

as zero.

- 13 -

WBclearline (w, howto)
Win *w;
int howto;

Clears the line the cursor is on in the text buffer attached to window w. If howto is zero the line is cleared from the

buffer cursor to the end of the line, including the character under the cursor; if one, from the beginning of the line to

the buffer cursor, not including the character under the cursor; if two, the entire line is cleared. Other values are

treated as zero.

WBcursor (w, row, col)
Win *w;
int row, col;

Sets the buffer cursor of the text buffer attached to window w to row row, columncol. Note: thereis only one buffer

cursor per buffer (i.e. two linked windows have only one buffer cursor). Row andcol are clipped to be within the

buffer.

WBdelchars (w, n)
Win *w;
int n;

Deletesn characters starting at the buffer cursor from the text buffer attached to windoww.

WBdelcols (w, n)
Win *w;
int n;

Deletesn columns starting at the buffer cursor column from the text buffer attached to window w. In effect, calls

WBdelcharson each line.

WBdellines (w, n)
Win *w;
int n;

Deletesn lines from the text buffer attached to windoww, starting with the line containing the buffer cursor.

- 14 -

WBinschars (w, n)
Win *w;
int n;

Insertsn blanks at the buffer cursor in the text buffer attached to windoww.

WBinscols (w, n)
Win *w0

Insertsn columns in the text buffer attached to windoww. In effect, callsWBinscharson each line.

WBinslines (w, n)
Win *w;
int n;

Insertsn lines at the buffer cursor in the text buffer attached to windoww.

WBputc (c, w)5

char c;
Win *w;

Prints characterc to the buffer attached to window w at the buffer cursor, and advances the buffer cursor. Note that

this character may well not be visible inside any or all of the windows using this buffer; care should be taken when

using this function to be sure that (if necessary and desired) a window is Wrelscrolled so that the character is visi-

ble.

WBputs (s, w)
char *s;
Win *w;

Puts a C style (null terminated) string into the buffer attached to window w, by usingWBputc on each character ins.

5Note that for this and all otherputc andputs functions, the window parameter comeslast.

- 15 -

WBread (w, charonly)
Win *w;
int charonly;

Reads back a character and (unlesscharonly is set) its mode from the buffer attached to window w at the buffer cur-

sor. The buffer cursor is then advanced, wrapping from the last character of the last line to the first character of the

first line if necessary. (Note that this ignores the autowrap setting.) SeeWCHAROF andWMODEOF .

