The Maryland Windw Library
Chris Torek

Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

There are manapplications for windas, but the implementation of windasoft-
ware is not an easy taskhe job can be considerably simplified by eliminating some of
the capabilities of a full system, foxample, requiring that windows do notedlap, hut
this reduces the usefulness of the restitis paper describes the Waisity of Maryland

Window Library, an mplementation that supports a very complete character-based win-
dow system.

1. Introduction

What exactly is a winde? Itis merely a rectangular region that can display. tén fact, it is very much like
a dandard terminad dsplay. Howeve, dnce it exists as a subarea of a real digptasan be mued around, or ce-

ered by other windes. Windows can neer be ligger than the real display.

One useful analogy for windows is glassoa room full of text. Thisroom is called the uffer. The huffer

can be bigger than the wingto Howeva, only the area that can be seen through the wiridwisible.

Two separate windows can look into the same roouffé. Thesame room is kealed through both win-
dows, but not necessarily the same part of that rodhrese windows are called "linked windows" although "#ithk

buffers” might hae been a better phrase.

Thus there are twbasic "parts" to a winde: its window descriptor (its position and size); and its textfér
or textbuf (holding the text to be displayed within the windo It is also useful to he a mrtion of a windav for
non-textual information. This is called the winbuf, or "winddouffer". Normallythe winbuf contains only "glass"
(empty space), but it can be written dror example, an outline, or frame, may be written onto the glass, @ sho

how much space isvailable within the windw (see Figure 1).

| Some text |
| inawindow |

Figure 1: Framed window

Figure 1 shars a sixteen by six windowith a frame. (The frame characters shown are those used on most
displays. Ordisplays that hae sme graphics capabilitpften the frames are cute little corners and sides that join
together giving the windav a very solid appearance.) Thextas in the text bffer, and the frame in the winao
buffer. This windav has a descriptor indicating that the wimdis Sxteen characters across by six characters high,

and points to the windgs winbuf and text bffer. The text luffer contains tw blank lines, the words "Somext&

-2-

on the third line, the words "in a window" on the fourth line, and mwre blank lines.The winbuf contains the

frame characters, with the inside of the winbuf being "glass" that displays the text buffer.

F— — — +
-
1
1
1
+

Figure 2: Overlapping windows

Windaows can werlap. InFigure 2 tvo windows overlap. Theonly difference betweerverlapped characters
and non-werlapped characters is thatenlapped characters arevigible. If a window is covered, it can be brought
to the "front" (where it will caer whatever used to cwer it). Windows may also be hidden to makem totally
invisible. Hidinga window that cwers others will expose the others: hiding the upper wingloFigure 2 wuld
male the lower one completely visiblediding a windav has no effect on the operations that can be performed on

it; one cart see the results, hower, until the windav is unhidden.

In addition to windws, there is a single "box" that may be turned on. It is awatetangular region on the
display that is made ofwerse video characters. It can be used either to outline a wjrd@as a oving block cur
sor. As a window outline, the box can be used to display where a winghay be created or med. Asa airsor,

the box can be used with a mouse or a bitpad as a pointer for selecting windows.

2. What's in a window?

2.1. Cursors

-3-

Like a erminal, a windw needs a cursorThe windav's aursor shows where the next character will be placed
within that windav, though characters are actually written into the texteln The cursor is normally visible as a

blinking block. It can be turned faf desired.

Since the windw actually has tw pieces, the winbuf and thextéuf, it also has more than one cursdhe
normal cursor ("winde cursor”) is the one just describe@here are tw others: theaux cursor and theuffer cur
sor. The aux cursor and theutber cursor will be discussed later; fonmd is enough to say that tlyeare never visi-

ble, and that all three cursors are mutually independent. In this document, "the cursor” refers to thewrsato

2.2. Text

Characters within a windo can be in ap combination of four modes: bold, underscored, blinking, and
reverse video. There is a "current mode" associated with each windthis is the mode with which future charac-
ters will be printed. In addition, there is the "glaastér" for characters within the winb arethey real characters,
or are thg just empty slots through which thetduffer should be displayed? Frame characters are not glassy; the
rest of the winbuf is normally filled with glassy blankBhe only way to put things into the winbuf is with the aux

cursor or one of the special functions, e.g., frame windo

2.3. Text Buffers vs. Window Buffers

A window buffer, as $ated earlieris normally just "glass" through which thextebuffer is displayed.How-
eva, it is possible to write characters, such as those making up a frame, into thd.wiiesecharacters then
obscure some of the characters in the teffieb It is dso possible to write modes into the wirib Thesemodes
can be considered "tinted glasshey affect the display of characters being viewed, though the characters them-
seles are not changed-or example, if irverse video has been "painted” onto the "glass”, all the characters in the
text buffer under that paint are displayed inerse video. If the glass is wiped clean of itsviexrse video paint, the

characters will be restored to normal. The modes on the glass arevexaliesl with those in the text buffer.

Text buffers also hae arsors, namely the Ufer cursor”. In linked windows, where dawindow descriptors
share a text uffer, there is only one uffer cursor In cther words, the bffer cursor is shared along with thette

buffer.

2.3.1. Mamgin Settings and the Aux Cursor

Windaow buffers also hae mamin settings. These are mainly used internally to keep the wiedsor from
overwriting the frames (if there are any), but can be set if desikéatgins determine the amount of glass in the
winbuf. Anything outside the margins is strictlyfdimits; the space inside the margins is the gladswever,
unwritable margins would not be particularly useflihe aux cursor is permitted to roaweothe entire winbf. It
can be used to print characters directly into the wiint\ny character in the winbuf will tak precedence \er the

character underneath it in the text buffEssentially the aux cursor writes on the glass.

While the aux cursor can be used to write into the wfinib can also be used in a sngakay to "un-write"
characters: thaux cursor is permitted to erase from the glass. Erasing a character from the winbuf re-exposes the
character underneath in the texffbr. Tinted glass is created by erasing with a mode other than normaarie.

combination of blinking, bold, underscored, angerse video).

Text buffers do not hee margin settings. No part of the texutfer is protected. Quite often, Wever, some
of the text liffer is not visible.In a typical framed winda, the entire top and bottom lines of thaffler, and the left
and right edges, are not visible, sinceythe corered by the frame characters. (Note that since the aux cursor could
at ary time erase part of the frames, thust remain imisible until explicitly exposed. Thg can't be aitomatically

"moved down and right".) Figure 3 should clear some of the mud.

|his is the second |
[ne, third line, fo|
[th line,... |

and its text buffer

)9.9.9.9.9.0.0.0.0.9.9.9.9.9.9.0.0.9.04
This is the second |

ine, third line, fou

rth line,... Y
77777777777777777777

Figure 3: A windev and buffer

2.3.2. Operations

Since a bffer can be larger than its wingipthere are "bffer operations" and "windw operations". Ingen-
eral, windav operations deal with the visible portion of thetteuffer, and in mary cases with the glass through
which said text is vieed. Bufer operations dealxelusively with the text luffer, and are not limited to the visible

portionsg. Figure 4 shws what happens when a line delete is performed as both awomiwation and auifer

operation on a winde that is smaller than its buffer.

I"visible portions" can include gered or hidden portions.Covered" is used to describe windows or characters that are obscured by other
windows. "Hidden"is used to describe windows not displayed at all by specific request. The visible portion ofw sviextbuf is the area that
is inside the windove margins; this is irrespeeg d whether the winde is hidden and/or ceered.

Window Buffer Window Buffer

S — + 0123456789 +------ + 0123456789

|CDEFGH| ABCDEFGHIJ |CDEFGH| ABCDEFGHIJ
IMNOPQR| KLMNOPQRST |MNOPQR| KLMNOPQRST
[WXYZab] UVWXYZabcd |WXYZab] UVWXYZabcd
+omme- + efghijklmn +------ + efghijklmn

(delete line from windw) (deleteline from buffer)

S — + 0123456789 +------ + 0123456789
|CDEFGH| ABCDEFGHIJ |CDEFGH| ABCDEFGHIJ
[WXYZab] KLWXYZabST |WXYZab] UVWXYZabcd
| | UV cd |ghijkl] efghijkimn

+omme- + efghijklmn = +------ +

Figure 4: Windav and Buffer Operations: Line Delete

When the cursor position is remt to the operation, windooperations are done at the windoursor and
buffer operations at theuffer cursor Only two operations (aux print and aux read) are done at the aux cursor posi-

tion.

2.4. Scolling

The real reason for having separate textdnss and windw buffers is to allav the storage of more text than is
visible. Thatis, kuffers can be much larger than the winwdbrough which thg are vieved. Thismeans that a win-
dow can be mued over the huffer. To go kack to the room-of-text analogihe wall is flexible, and the glass of the
window can be pulled around on itln the windav library, moving the windev over its text luffer is called
scrolling. Thusyou can scroll a winde up, down, left, or right, wer its huffer. There are limits, hoever: the
amount of scrolling permitted depends on just/lmuch more space there is in theffer than the winde. You

cant pull the glass past the edge of the wall.

The more coventional definition of scrolling is mang the existing text upward or doward, discarding one
line at the top or bottom, and making room fownext. Thewindow library provides this by making aneeption

to the scrolling limits. If the winde is scrolled past the end of thaiffer, the tuffer is "extended” one line at the

bottom, and a line is "erased" from the top, making the wirfitaonce agin. (Theactual algorithm is to copthe
text upward, lkeeping the winde at the bottom of the uiffer.) A similar exception is made for scrolling past the
beginning of the kffer. This action (moving the text upwards omdawvards, losing a line éthe top or bottom) is

called "scrolling the buffer”, and may be done direetighout moving the winde past the edge of the buffer.

Windaws automatically scroll when necessaWhen this happens, the number of lines scrolled is controlled
by the windev's "popup”. Popuplefaults to one, but can be set anywhere from zero to the size of theamwindo
Scrolling byn lines (> 1) is exactly equvalent to scrolling by one lina times. Scrollingoy zero lines is a special
case. ltis not scrolling at all.Rather the cursor is brought to the top of the windand the top line is cleared.
Each time the cursor advances to the next line, that line is also cl&dh=mh the cursor reaches the bottom of the

window, the process is repeated. This is much faster on some terminals, but tends to be confusing.

2.5. Printing Text

There are three ways to print text into a wiwddrhe first is to print at the wineocursor the second to print
at the liffer cursoy and the third to print at the aux cursdrhe first and second are generally more useful than the

third, and hge less "drastic" effects.

The aux cursor can be anywhere within the wimdbaffer, and characters printed with it are required tueha
a mode. Thismode includes (in addition to the standard four mode bits) the "glassiness" infornTdte@nharacter
being printed is not interpreted inyaway, but simply sheed onto the glass. If the character is not standard ASCII
(codes 32 to 126 decimal), the results are terminal-dependent. Some terminals use special codes fomthe windo
frame characters, and look for such codes; others do not and may end up clearing the screen, repositioning the cur

sor, or doing other undesirable things. Therefore, the aux cursor must be used very carefully.

Both the winda cursor and the uffer cursor check the character being printed, ane $aécial actions for

non-ASCII characters. Most of these codes are ignored. The following are not:

BELL

ASCII 7, or bell, rings the terminal'tell. If desired, this may be set to flash the terméngifeen instead,

BS

TAB

LF

CR

-8-

providing that the terminal has this capabilityisible bells are often nicer in a evded working ewiron-

ment.

ASCII 8, or backspace, mes the cursor backwards one charactérthe cursor is at its leftmost permitted

column, it does not me.

ASCII 9, tab, mees the cursor forward one tab stopab sops are set atvery eight columns.If there are no

remaining tab stops, the cursor isvedbto the rightmost column.

ASCII 10, linefeed, mees the cursor down one line without changing its colun(ii. CR/LF mapping is
turned on, it mees it to the leftmost column.) If the cursor is on the bottom line, the windoscrolled. If
this is the bffer cursoy then one line at the top of theffer is thrown avay, and a nev blani line is intro-

duced (i.e. the buffer is scrolled). If this is the windmirsor, then the windw is scrolled by its popup.

ASCII 13, carriage return, mes the cursor to the leftmost columiflf CR/LF mapping is turned on, it also

performs a linefeed).

For the windav and huffer cursors, autowrap and CR/LF mapping can be turned on indudbwrap means

that when a character is written in the last column of the wiratdouffer, it is wrapped to the next line, as if a car

riage return and line feed had been printed. This mode defaulSR#LF mapping makes both carriage return and

line feed go to the first column of thextdine; i.e., either code performs the actions normally done by bidils

mode defaults &f The aux cursor alays wraps, and, upon reaching the last column of the last line, wraps to the

first column of the first lineSince it does not translate special codes, it ignores CR/LF mapping. It should-not nor

mally be used to print CRs or LFs.

3. UpdateOptimization

made

2The blanks introduced are in the current mode of the windowifitee current mode is irerse video, a line of irerse video blanks is

. Thigs true for all functions that introduce blanks in the buffer.

-9-

The Maryland Vihdow Library keeps track of what the termisagtreen looks like, and when asked to update
("refresh") the screen, attempts to do it with the greatest possible dpeesection of lines on the current screen
matches a section on the desired screen, line insert and delete operations may be dané¢oatdoines to their
new position. If subsections of an old line match those of & oee, insert and delete character may be ugey.
number of arbitrarily compleoperations may be done between screen refreshes; the update is computed at refresh

time.

4. SignalHandling

Since windev display mode turns on mgrspecial Unix tty modes, it needs to talgecial consideration of
signals that normally cause it to stop ait.e (For more information on signals, segnal(2) andjobs(3j) in the
Unix Programmes Manual [Jg et al 81].) TheMaryland Window Library uses the job control routines provided in
Berkeley 4.1 Unix. Since mayUnix systems dom’havejob control, the actual calls to these routines are made only
if permitted by the programmetf signal handling is not enabled, it is the programm@b to manage the Unix
signals. Signamanagement is notwaidys easyso if enabled, the windw library will provide default signal han-
dlers for those signals kky to occurnamely SIGINT and SIGTSTRSIGINT is the interrupt signal (generated with
the DEL ley). Thedefault handler for this signakis after restoring the initial terminal modes. SIGTSTP is the

terminal stop signal (generated with control-Z). The default handler for this signal cleans up the terminal settings,
suspends the process, and upon resumption re-initializes the terminal to window!s mode.
Enabling signal handling is done with tiéinit call (described later). If at all possible, it is recommended

that signal handling be enabled. If the default signal handlers are not desired, signal handling should be enabled

anyway and the handlers changed toanRinctions viasigset

If the target operating system does notéhthe jobs librarythen there are twvdternatives. Oneis to write a

jobs library simulator (see Appendix 3); the other to not usknitither case the functioisggset sighold, sigrelse

3Unix is a trademark of Bell Laboratories.
4l chose not to catch SIGQUIT since core dumps are handy fagdety. Besidesyne can alays callsigset (SIGQUIT, Wexit);.

-10 -

andsigignoremust be preided. Ifthe functions are not being used ytineay be empty (e.gsigset () {}.

5. Window Library Functions

This section describes the actual functionsvigied by the Maryland Wdow Library. All return a alue.
Most return zero if the succeed; exceptions are listedio compile with the library#include the file <local/win-
dow.h>, and include "-lwinlib -ljobs —Itermlib” when making thegeeutable. (Seé\ppendix 4 for sample pro-
grams.) Thdirst four functions listed are those for initializing, suspending, and cleaning up; the remainder are in
alphabetical orderNote: se&eral functions "clip” their @lues. Thigmeans that if theare given out-of-range wal-

ues, the nearest value that is in range is used.

The windav library provides seeral types, macros, anditiables. Themnain type isWin, and is the windw
descriptor structure. There is also a "current" wimdzalled CurWin , but it is in no way special; it is provided for
corvenience only It is afected only by the functiond/open, Wlink , Wclose Wcloseall, Wfind, and Wboxfind.
The type, macro, andhviable definitions are listed in Appendix Mlote: bold text indicates exact stringdJnder-

scored text indicates arguments that are to be filled in.

Winit (settings, nomagic)
struct sgttyb *settings;
int nomagic;

Initializes the windar system, clearing the screen and setting the tty moliesmally, both settings and nomagic
should be gien as zro. T resume a suspended session, whErgit has already been calleskttings may be
given as (struct sgttyb *) 1. If special tty mode settings are desirsetfings can be the address of a presetict
sgttyb structure (sestty(2), gtty(2)). (Baudrate will be replaced with the actual baud rate of the termihidless
signal handling is not desired (or not necessagy in rav mode)nomagic should be gien as 2ro. Otherwisesig-
nal handling will not be enabledA value of zero will seWWsuspendto catch SIGTSTP and/exit to handle SIG-

INT.

-11 -

Winit returns zero if the winde package can be run on the terminHdlWinit does not return zero, nothing
has been done, and none of the other functions should be oecit will return the same value if called &g,

so if it said "Ok" once it woih’change its mind.)

Wsuspend ()

Suspends the process by callWgleanup, sending SIGTSTPand then callingwinit (1, 1). This is the standard

way to handle control-Z.

Wecleanup ()

Cleans up the terminal settings to the way there whenWinit was called. Thismust be done before exiting, or

before giving up control of the terminal (e.g. to a subshell).

Wexit (code)
int code;

CallsWcleanup andexit (code). This should be used insteadexdiit unlessWcleanup has already been called.

Ding ()

Rings the terminad' kell. Thisis normally just called when control-G (bell) is printedt kb can be called directly if
desired. Ifthe \ariable VisibleBell is nonzero, and the terminal supports it, this will flash the terraigaiéen

instead.

Max (a, b)

This is a macro which expands to

((@>(b)? (@) : (b))

which is the larger of the warguments.

-12 -

Min (a, b)

This is a macro which expands to

(@ <(b)? (@) : (b))

which is the smaller of the mwarguments.

WA cursor (w, row, col)
Win *w;
int row, col;

Sets the position of the windacursor The position (0, 0) is as far left and up as the windorsor can getwer the

text buffer; this function may scroll the windoto get to the specified position. The name of this function stands for
"Window Absolute cursor ma@&', meaning muee the windav cursor to an absolute coordinate, where "absolute"
means measured from as far left and up as possiblenove aly within the windev (where (0, 0) is the upper left

corner inside the margin settings), Wg#/cursor. Row andcol are clipped to be within the windo

WAread (w, charonly)
Win *w;,
int charonly;

Reads back a character and (unigssonly is set) its mode from window’s winbuf at the aux cursorThe aux
cursor is then acgnced, wrapping from the last character of the last line to the first character of the first line if nec-

essary SeeWCHAROF andWMODEOF .

WBclear (w, howto)
Win *w;
int howto;

Clears (sets to blanks) the texiffier attached to winde w. If howto is zero, the bffer is cleared from theuffer
cursor to the end of theuffer, including the character under the cursor; if one, from the beginning otitfes to
the cursornot including the character under the cursor; if two, the entifieibis cleared. Other values are treated

as zero.

-13-

WBclearline (w, howto)
Win *w;
int howto;

Clears the line the cursor is on in the texifér attached to winde w. If howto is zero the line is cleared from the
buffer cursor to the end of the line, including the character under the cursor; if one, fromitiméngeof the line to
the huffer cursor not including the character under the cursor; if two, the entire line is cleared. Other values are

treated as zero.

WBcursor (w, row, col)
Win *w;
int row, col;

Sets the bffer cursor of the textudfer attached to winde w to row row, columncol. Note: therds only one hffer
cursor per bffer (i.e. two linked windows hee aly one luffer cursor). Row andcol are clipped to be within the

buffer.

WBdelchars {w, n)
Win *w;
int n;

Deletesn characters starting at the buffer cursor from the text buffer attached to window

WBdelcols (v, n)
Win *w;
int n;

Deletesn columns starting at theuffer cursor column from the xebuffer attached to winde w. In efect, calls

WBdelcharson each line.

WBdellines {w, n)
Win *w;
int n;

Deletesn lines from the text buffer attached to windewstarting with the line containing the buffer cursor.

-14 -

WBinschars (w, n)
Win *w;
int n;

Insertsn blanks at the buffer cursor in the text buffer attached to window

WBinscols {v, n)
Win *w0

Insertsn columns in the text buffer attached to windew In efect, callswBinschars on each line.

WBinslines (w, n)
Win *w;
int n;

Insertsn lines at the buffer cursor in the text buffer attached to window

WBputc (¢, w)®

char c;

Win *w;
Prints charactec to the luffer attached to winde w at the liffer cursor and advances theulfer cursor Note that
this character may well not be visible inside an dl of the windows using thisuffer; care should be taken when

using this function to be sure that (if necessary and desired) awisdrelscrolled so that the character is visi-

ble.

WBputs (s, w)
char *s
Win *w;

Puts a C style (null terminated) string into théfér attached to winde w, by usingWBputc on each character &

5Note that for this and all othputc andputs functions, the winde parameter comesist.

-15-

WBread (w, charonly)
Win *w;,
int charonly;

Reads back a character and (unt#ssonly is set) its mode from theulfer attached to winde w at the liffer cur
sor The huffer cursor is then advanced, wrapping from the last character of the last line to the first character of the

first line if necessary(Note that this ignores the autowrap setting.) W&HAROF andWMODEOF .

