
Extended Window Manager
Hints

X Desktop
Group(http://www.freedesktop.org)

1. Introduction

1.1. Version
This is Draft version 1.3 of the Extended Window Manager Hints (EWMH) spec,
updated January 3, 2003. The canonical home for this document is
http://www.freedesktop.org(http://www.freedesktop.org/standards/wm-spec.html),
which also contains directions for reporting bugs or contributing to future versions.

1.2. What is this spec?
This spec defines interactions between window managers, applications, and the
utilities that form part of a desktop environment. It buildson the Inter-Client
Communication Conventions Manual [ICCCM], which defines window manager
interactions at a lower level. The ICCCM does not provide ways to implement many
features that modern desktop users expect. The GNOME and KDEdesktop projects
originally developed their own extensions to the ICCCM to support these features;
this spec replaces those custom extensions with a standardized set of ICCCM
additions that any desktop environment can adopt.

1.3. Language used in this specification
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC 2119.

1

Extended Window Manager Hints

The key words "Window Manager" refer to a window manager which is adopting
this specification. "Pager" refers to desktop utility applications, including pagers
and taskbars. "Application" refers to other clients. "Clients" refers to Pagers and
Applications ie. all X clients, except for the Window Manager.

1.4. Prerequisites for adoption of this specification
Window Managers and Clients which aim to fulfill this specification MUST adhere
to the ICCCM on which this specification builds. If this specification explicitly
modifies the ICCCM Window Managers and Clients MUST fulfill these
modifications.

2. Non-ICCCM features
There is a number of window management features or behaviorswhich are not
specified in the ICCCM, but are commonly met in modern window managers and
desktop environments.

2.1. Additional States
The ICCCM allows window managers to implement additional window states,
which will appear to clients as substates of NormalState andIconicState. Two
commonly met examples are Maximized and Shaded. A window manager may
implement these as proper substates of NormalState and IconicState, or it may treat
them as independent flags, allowing e.g. a maximized window to be iconified and to
re-appear as maximized upon de-iconification.

2.1.1. Maximization

Maximization is a very old feature of window managers. Therewas even a
ZoomedState in early ICCCM drafts. Maximizing a window should give it as much
of the screen area as possible (this may not be the full screenarea, but only a
smaller ’workarea’, since the window manager may have reserved certain areas for
other windows). A window manager is expected to remember thegeometry of a
maximized window and restore it upon de-maximization. Modern window
managers typically allow separate horizontal and verticalmaximization.

With the introduction of the Xinerama extension in X11 R6.4,maximization has
become more involved. Xinerama allows a screen to span multiple monitors in a
freely configurable geometry. In such a setting, maximizinga window would ideally

2

Extended Window Manager Hints

not grow it to fill the whole screen, but only the monitor it is shown on. There are of
course borderline cases for windows crossing monitor boundaries, and ’real’
maximization to the full screen may sometimes be useful.

2.1.2. Shading

Some desktop environments offer shading (also known as rollup) as an alternative
to iconification. A shaded window typically shows only the titlebar, the client
window is hidden, thus shading is not useful for windows which are not decorated
with a titlebar.

2.2. Modality
The WM_TRANSIENT_FOR hint of the ICCCM allows clients to specify that a
toplevel window may be closed before the client finishes. A typical example of a
transient window is a dialog. Some dialogs can be open for a long time, while the
user continues to work in the main window. Other dialogs haveto be closed before
the user can continue to work in the main window. This property is called modality.
While clients can implement modal windows in an ICCCM compliant way using
the globally active input model, some window managers offersupport for handling
modality.

2.3. Large Desktops
The window manager may offer to arrange the managed windows on a desktop that
is larger than the root window. The screen functions as a viewport on this large
desktop. Different policies regarding the positioning of the viewport on the desktop
can be implemented: The window manager may only allow the viewport position to
change in increments of the screen size (paging) or it may allow arbitrary positions
(scrolling).

To fulfill the ICCCM principle that clients should behave thesame regardless
whether a window manager is running or not, window managers which implement
large desktops must interpret all client-provided geometries with respect to the
current viewport.

2.3.1. Implementation note

There are two options for implementing a large desktop: The first is to keep the
managed windows (or, if reparenting, their frames) as children of the root window.

3

Extended Window Manager Hints

Moving the viewport is achieved by moving all managed windows in the opposite
direction.

The second alternative is to reparent all managed windows toa dedicated large
window (somewhat inappropriately called a ’virtual root’). Moving the viewport is
then achieved by moving the virtual root in the opposite direction.

Both alternatives are completely ICCCM compliant, although the second one may
be somewhat problematic for clients trying to figure out the window manager
decorations around their toplevel windows and for clients trying to draw
background images on the root window.

2.4. Sticky windows
A window manager which implements a large desktop typicallyoffers a way for the
user to make certain windows ’stick to the glass’, i.e. thesewindows will stay at the
same position on the screen when the viewport is moved.

2.5. Virtual Desktops
Most X servers have only a single screen. The window manager may virtualize this
resource and offer multiple so-called ’virtual desktops’,of which only one can be
shown on the screen at a time. There is some variation among the features of virtual
desktop implementations. There may be a fixed number of desktops, or new ones
may be created dynamically. The size of the desktops may be fixed or variable. If
the desktops are larger than the root window, their viewports (seeSection 2.3) may
be independent or forced to be at the same position.

A window manager which implements virtual desktops generally offers a way for
the user to move clients between desktops. Clients may be allowed to occupy more
than one desktop simultaneously.

2.5.1. Implementation note

There are at least two options for implementing virtual desktops. The first is to use
multiple virtual roots (seeSection 2.3.1) and change the current desktop by
manipulating the stacking order of the virtual roots. This is completely ICCCM
compliant, but has the issues outlined inSection 2.3.1

The second option is to keep all managed windows as children of the root window
and unmap the frames of those which are not on the current desktop. Unmapped
windows should be placed in IconicState, according to the ICCCM. Windows which
are actually iconified or minimized should have the _NET_WM_STATE_HIDDEN

4

Extended Window Manager Hints

property set, to communicate to pagers that the window should not be represented
as "onscreen."

2.6. Pagers
A pager offers a different UI for window management tasks. Itshows a miniature
view of the desktop(s) representing managed windows by small rectangles and
allows the user to initiate various window manager actions by manipulating these
representations. Typically offered actions are activation (seeSection 2.8), moving,
restacking, iconification, maximization and closing. On a large desktop, the pager
may offer a way to move the viewport. On virtual desktops, thepager may offer
ways to move windows between desktops and to change the current desktop.

2.7. Taskbars
A taskbar offers another UI for window management tasks. It typically represents
client windows as a list of buttons labelled with the window titles and possibly
icons. Pressing a button initiates a window manager action on the represented
window, typical actions being activation and iconification. In environments with a
taskbar, icons are often considered inappropriate, since the iconified windows are
already represented in the taskbar.

2.8. Activation
In the X world, activating a window means to give it the input focus. This may not
be possible if the window is unmapped, because it is on a different desktop. Thus,
activating a window may involve additional steps like moving it to the current
desktop (or changing to the desktop the window is on), deiconifying it or raising it.

2.9. Animated iconification
Some window managers display some form of animation when (de-)iconifying a
window. This may be a line drawing connecting the corners of the window with the
corners of the icon or the window may be opaquely moved and resized on some
trajectory joining the window location and the icon location.

5

Extended Window Manager Hints

2.10. Window-in-window MDI
Window-in-window MDI is a multiple document interface known from MS
Windows platforms. Programs employing it have a single top-level window which
contains a workspace which contains the subwindows for the open documents.
These subwindows are decorated with window manager frames and can be
manipulated within their parent window just like ordinary top-level windows on the
root window.

2.11. Layered stacking order
Some window managers keep the toplevel windows not in a single linear stack, but
subdivide the stack into several layers. There is a lot of variation among the features
of layered stacking order implementations. The number of layers may or may not be
fixed. The layer of a toplevel window may be explicit and directly modifiable or
derived from other properties of the window, e.g. thetype of the window. The
stacking order may or may not be strict, i.e. not allow the user to raise or lower
windows beyond their layer.

2.12. Scope of this spec
This spec tries to address the following issues:

• Allow clients to influence their initial state with respect to maximization,
shading, stickiness, desktop, stacking order.

• Improve the window managers ability to vary window decorations and maintain
the stacking order by allowing clients to hint the window manager about the type
of their windows.

• Enable pagers and taskbars to be implemented as separate clients and allow them
to work with any compliant window manager.

This spec doesn’t cover any of the following:

• Other IPC mechanisms like ICE or Corba.

• Window manager configuration.

• Window manager documentation.

• Clients appearing on a proper subset of desktops.

• Window-in-window MDI.

6

Extended Window Manager Hints

The window manager is supposed to be in charge of window management policy, so
that there is consistent behavior on the user’s screen no matter who wrote the clients.

The spec offers a lot of external control about window manager actions. This is
intended mainly to allow pagers, taskbars and similar window manager UIs to be
implemented as separate clients. "Ordinary" clients shouldn’t use these except
maybe in response to a direct user request (i.e. setting a config option to start
maximized or specifying a -desk n command line argument).

3. Root Window Properties (and Related
Messages)

Whenever this spec speaks about “sending a message to the root window”, it is
understood that the client is supposed to create a ClientMessage event with the
specified contents and send it by using a SendEvent request with the following
arguments:

destination root
propagate False
event-mask (SubstructureNotify|SubstructureRedirect)
event the specified ClientMessage

3.1. _NET_SUPPORTED

_NET_SUPPORTED, ATOM[]/32

This property MUST be set by the Window Manager to indicate which hints it
supports. For example: considering _NET_WM_STATE both this atom and all
supported states e.g. _NET_WM_STATE_MODAL, _NET_WM_STATE_STICKY,
would be listed. This assumes that backwards incompatible changes will not be
made to the hints (without being renamed).

3.2. _NET_CLIENT_LIST

_NET_CLIENT_LIST, WINDOW[]/32
_NET_CLIENT_LIST_STACKING, WINDOW[]/32

7

Extended Window Manager Hints

These arrays contain all X Windows managed by the Window Manager.
_NET_CLIENT_LIST has initial mapping order, starting withthe oldest window.
_NET_CLIENT_LIST_STACKING has bottom-to-top stacking order. These
properties SHOULD be set and updated by the Window Manager.

3.3. _NET_NUMBER_OF_DESKTOPS

_NET_NUMBER_OF_DESKTOPS, CARDINAL/32

This property SHOULD be set and updated by the Window Managerto indicate the
number of virtual desktops.

A Pager can request a change in the number of desktops by sending a
_NET_NUMBER_OF_DESKTOPS message to the root window:

_NET_NUMBER_OF_DESKTOPS
message_type = _NET_NUMBER_OF_DESKTOPS
format = 32
data.l[0] = new_number_of_desktops

The Window Manager is free to honor or reject this request. Ifthe request is
honored _NET_NUMBER_OF_DESKTOPS MUST be set to the new number of
desktops, _NET_VIRTUAL_ROOTS MUST be set to store the new number of
desktop virtual root window IDs and _NET_DESKTOP_VIEWPORTand
_NET_WORKAREA must also be changed accordingly. The
_NET_DESKTOP_NAMES property MAY remain unchanged.

If the number of desktops is shrinking and _NET_CURRENT_DESKTOP is out of
the new range of available desktops, then this MUST be set to the last available
desktop from the new set. Clients that are still present on desktops that are out of
the new range MUST be moved to the very last desktop from the new set. For these
_NET_WM_DESKTOP MUST be updated.

3.4. _NET_DESKTOP_GEOMETRY

_NET_DESKTOP_GEOMETRY width, height, CARDINAL[2]/32

Array of two cardinals that defines the common size of all desktops (this is equal to
the screen size if the Window Manager doesn’t support large desktops, otherwise
it’s equal to the virtual size of the desktop). This propertySHOULD be set by the
Window Manager.

A Pager can request a change in the desktop geometry by sending a
_NET_DESKTOP_GEOMETRY client message to the root window:

8

Extended Window Manager Hints

_NET_DESKTOP_GEOMETRY
message_type = _NET_DESKTOP_GEOMETRY
format = 32
data.l[0] = new_width
data.l[1] = new_height

The Window Manager MAY choose to ignore this message, in which case
_NET_DESKTOP_GEOMETRY property will remain unchanged.

3.5. _NET_DESKTOP_VIEWPORT

_NET_DESKTOP_VIEWPORT x, y, CARDINAL[][2]/32

Array of pairs of cardinals that define the top left corner of each desktop’s viewport.
For Window Managers that don’t support large desktops, thisMUST always be set
to (0,0).

A Pager can request to change the viewport for the current desktop by sending a
_NET_DESKTOP_VIEWPORT client message to the root window:

_NET_DESKTOP_VIEWPORT
message_type = _NET_DESKTOP_VIEWPORT
format = 32
data.l[0] = new_vx
data.l[1] = new_vy

The Window Manager MAY choose to ignore this message, in which case
_NET_DESKTOP_VIEWPORT property will remain unchanged.

3.6. _NET_CURRENT_DESKTOP

_NET_CURRENT_DESKTOP desktop, CARDINAL/32

The index of the current desktop. This is always an integer between 0 and
_NET_NUMBER_OF_DESKTOPS - 1. This MUST be set and updated bythe
Window Manager. If a Pager wants to switch to another virtualdesktop, it MUST
send a _NET_CURRENT_DESKTOP client message to the root window:

_NET_CURRENT_DESKTOP
message_type = _NET_CURRENT_DESKTOP
format = 32
data.l[0] = new_index

9

Extended Window Manager Hints

3.7. _NET_DESKTOP_NAMES

_NET_DESKTOP_NAMES, UTF8_STRING[]

The names of all virtual desktops. This is a list of NULL-terminated strings in
UTF-8 encoding [UTF8]. This property MAY be changed by a Pager or the
Window Manager at any time.

Note: The number of names could be different from
_NET_NUMBER_OF_DESKTOPS. If it is less than
_NET_NUMBER_OF_DESKTOPS, then the desktops with high numbers are
unnamed. If it is larger than _NET_NUMBER_OF_DESKTOPS, then the excess
names outside of the _NET_NUMBER_OF_DESKTOPS are considered to be
reserved in case the number of desktops is increased.

Rationale: The name is not a necessary attribute of a virtualdesktop. Thus the
availability or unavailability of names has no impact on virtual desktop
functionality. Since names are set by users and users are likely to preset names for a
fixed number of desktops, it doesn’t make sense to shrink or grow this list when the
number of available desktops changes.

3.8. _NET_ACTIVE_WINDOW

_NET_ACTIVE_WINDOW, WINDOW/32

The window ID of the currently active window or None if no window has the focus.
This is a read-only property set by the Window Manager. If a Client wants to
activate another window, it MUST send a _NET_ACTIVE_WINDOWclient
message to the root window:

_NET_ACTIVE_WINDOW
window = window to activate
message_type = _NET_ACTIVE_WINDOW
format = 32
data.l[0] = 0 /* may be used later */

3.9. _NET_WORKAREA

_NET_WORKAREA, x, y, width, height CARDINAL[][4]/32

This property MUST be set by the Window Manager upon calculating the work area
for each desktop. Contains a geometry for each desktop. These geometries are
specified relative to the viewport on each desktop and specify an area that is

10

Extended Window Manager Hints

completely contained within the viewport. Work area SHOULDbe used by desktop
applications to place desktop icons appropriately.

The Window Manager SHOULD calculate this space by taking thecurrent page
minus space occupied by dock and panel windows, as indicatedby the
_NET_WM_STRUTproperty set on client windows.

3.10. _NET_SUPPORTING_WM_CHECK

_NET_SUPPORTING_WM_CHECK, WINDOW/32

The Window Manager MUST set this property on the root window to be the ID of a
child window created by himself, to indicate that a compliant window manager is
active. The child window MUST also have the
_NET_SUPPORTING_WM_CHECK property set to the ID of the child window.
The child window MUST also have the _NET_WM_NAME property set to the
name of the Window Manager.

Rationale: The child window is used to distinguish an activeWindow Manager from
a stale _NET_SUPPORTING_WM_CHECK property that happens topoint to
another window. If the _NET_SUPPORTING_WM_CHECK window onthe client
window is missing or not properly set, clients SHOULD assumethat no conforming
Window Manager is present.

3.11. _NET_VIRTUAL_ROOTS

_NET_VIRTUAL_ROOTS, WINDOW[]/32

To implement virtual desktops, some Window Managers reparent client windows to
a child of the root window. Window Managers using this technique MUST set this
property to a list of IDs for windows that are acting as virtual root windows. This
property allows background setting programs to work with virtual roots and allows
clients to figure out the window manager frame windows of their windows.

3.12. _NET_DESKTOP_LAYOUT

_NET_DESKTOP_LAYOUT, orientation, columns, rows, starting_corner CAR-
DINAL[4]/32

#define _NET_WM_ORIENTATION_HORZ 0
#define _NET_WM_ORIENTATION_VERT 1

#define _NET_WM_TOPLEFT 0

11

Extended Window Manager Hints

#define _NET_WM_TOPRIGHT 1
#define _NET_WM_BOTTOMRIGHT 2
#define _NET_WM_BOTTOMLEFT 3

This property is set by a Pager, not by the Window Manager. When setting this
property, the Pager must own a manager selection (as defined in the ICCCM 2.8).
The manager selection is called _NET_DESKTOP_LAYOUT_Sn wheren is the
screen number. The purpose of this property is to allow the Window Manager to
know the desktop layout displayed by the Pager.

_NET_DESKTOP_LAYOUT describes the layout of virtual desktops relative to
each other. More specifically, it describes the layout used by the owner of the
manager selection. The Window Manager may use this layout information or may
choose to ignore it. The property contains four values: the Pager orientation, the
number of desktops in the X direction, the number in the Y direction, and the
starting corner of the layout, i.e. the corner containing the first desktop.

Note: In order to inter-operate with Pagers implementing anearlier draft of this
document, Window Managers should accept a _NET_DESKTOP_LAYOUT
property of length 3 and use _NET_WM_TOPLEFT as the startingcorner in this
case.

The virtual desktops are arranged in a rectangle withrows rows andcolumns
columns. Ifrows timescolumns does not match the total number of desktops as
specified by _NET_NUMBER_OF_DESKTOPS, the highest-numbered
workspaces are assumed to be nonexistent. Eitherrows or columns (but not both)
may be specified as 0 in which case its actual value will be derived from
_NET_NUMBER_OF_DESKTOPS.

When the orientation is _NET_WM_ORIENTATION_HORZ the desktops are laid
out in rows, with the first desktop in the specified starting corner. So a layout with
four columns and three rows starting in the _NET_WM_TOPLEFTcorner looks
like this:

+--+--+--+--+
| 0| 1| 2| 3|
+--+--+--+--+
| 4| 5| 6| 7|
+--+--+--+--+
| 8| 9|10|11|
+--+--+--+--+

With starting_corner _NET_WM_BOTTOMRIGHT, it looks like this:

+--+--+--+--+
|11|10| 9| 8|
+--+--+--+--+
| 7| 6| 5| 4|

12

Extended Window Manager Hints

+--+--+--+--+
| 3| 2| 1| 0|
+--+--+--+--+

When the orientation is _NET_WM_ORIENTATION_VERT the layout with four
columns and three rows starting in the _NET_WM_TOPLEFT corner looks like:

+--+--+--+--+
| 0| 3| 6| 9|
+--+--+--+--+
| 1| 4| 7|10|
+--+--+--+--+
| 2| 5| 8|11|
+--+--+--+--+

With starting_corner _NET_WM_TOPRIGHT, it looks like:

+--+--+--+--+
| 9| 6| 3| 0|
+--+--+--+--+
|10| 7| 4| 1|
+--+--+--+--+
|11| 8| 5| 2|
+--+--+--+--+

The numbers here are the desktop numbers, as for _NET_CURRENT_DESKTOP.

3.13. _NET_SHOWING_DESKTOP

_NET_SHOWING_DESKTOP desktop, CARDINAL/32

Some Window Managers have a "showing the desktop" mode in which windows are
hidden, and the desktop background is displayed and focused. If a Window
Manager supports the _NET_SHOWING_DESKTOP hint, it MUST set it to a value
of 1 when the Window Manager is in "showing the desktop" mode,and a value of
zero if the Window Manager is not in this mode.

If a Pager wants to enter or leave the mode, it MUST send a
_NET_SHOWING_DESKTOP client message to the root window requesting the
change:

_NET_SHOWING_DESKTOP
message_type = _NET_SHOWING_DESKTOP

13

Extended Window Manager Hints

format = 32
data.l[0] = boolean 0 or 1

The Window Manager may choose to ignore this client message.

4. Other Root Window Messages

4.1. _NET_CLOSE_WINDOW

_NET_CLOSE_WINDOW

Pagers wanting to close a window MUST send a _NET_CLOSE_WINDOW client
message request to the root window:

_NET_CLOSE_WINDOW
window = window to close
message_type = _NET_CLOSE_WINDOW
format = 32
data.l[0] = 0 /* may be used later */

The Window Manager MUST then attempt to close the window specified.

Rationale: A Window Manager might be more clever than the usual method (send
WM_DELETE message if the protocol is selected, XKillClientotherwise). It might
introduce a timeout, for example. Instead of duplicating the code, the Window
Manager can easily do the job.

4.2. _NET_MOVERESIZE_WINDOW

_NET_MOVERESIZE_WINDOW
window = window to be moved or resized
message_type = _NET_MOVERESIZE_WINDOW
format = 32
data.l[0] = gravity and flags
data.l[1] = x
data.l[2] = y
data.l[3] = width
data.l[4] = height

The low byte of data.l[0] contains the gravity to use; it may contain any value
allowed for the WM_SIZE_HINTS.win_gravity property: NorthWest (1), North (2),
NorthEast (3), West (4), Center (5), East (6), SouthWest (7), South (8), SouthEast

14

Extended Window Manager Hints

(9) and Static (10). A gravity of 0 indicates that the Window Manager should use
the gravity specified in WM_SIZE_HINTS.win_gravity. The bits 8 to 11 indicate
the presence of x, y, width and height.

Pagers wanting to move or resize a window may send a
_NET_MOVERESIZE_WINDOW client message request to the rootwindow
instead of using a ConfigureRequest.

Window Managers should treat a _NET_MOVERESIZE_WINDOW message
exactly like a ConfigureRequest (in particular, adhering tothe ICCCM rules about
synthetic ConfigureNotify events), except that they shoulduse the gravity specified
in the message.

Rationale: Using a _NET_MOVERESIZE_WINDOW message with StaticGravity
allows Pagers to exactly position and resize a window including its decorations
without knowing the size of the decorations.

4.3. _NET_WM_MOVERESIZE

_NET_WM_MOVERESIZE
window = window to be moved or resized
message_type = _NET_WM_MOVERESIZE
format = 32
data.l[0] = x_root
data.l[1] = y_root
data.l[2] = direction
data.l[3] = button

This message allows Clients to initiate window movement or resizing. They can
define their own move and size "grips", whilst letting the Window Manager control
the actual operation. This means that all moves/resizes canhappen in a consistent
manner as defined by the Window Manager.

When sending this message in response to a button press event, button SHOULD
indicate the button which was pressed, x_root and y_root MUST indicate the
position of the button press with respect to the root window and direction MUST
indicate whether this is a move or resize event, and if it is a resize event, which
edges of the window the size grip applies to. When sending this message in
response to a key event, the direction MUST indicate whetherthis this is a move or
resize event and the other fields are unused.

#define _NET_WM_MOVERESIZE_SIZE_TOPLEFT 0
#define _NET_WM_MOVERESIZE_SIZE_TOP 1
#define _NET_WM_MOVERESIZE_SIZE_TOPRIGHT 2
#define _NET_WM_MOVERESIZE_SIZE_RIGHT 3
#define _NET_WM_MOVERESIZE_SIZE_BOTTOMRIGHT 4

15

Extended Window Manager Hints

#define _NET_WM_MOVERESIZE_SIZE_BOTTOM 5
#define _NET_WM_MOVERESIZE_SIZE_BOTTOMLEFT 6
#define _NET_WM_MOVERESIZE_SIZE_LEFT 7
#define _NET_WM_MOVERESIZE_MOVE 8 /* movement only */
#define _NET_WM_MOVERESIZE_SIZE_KEYBOARD 9 /* size via key-
board */
#define _NET_WM_MOVERESIZE_MOVE_KEYBOARD 10 /* move via key-
board */

The Client MUST release all grabs prior to sending such message.

The Window Manager can use the button field to determine the events on which it
terminates the operation initiated by the _NET_WM_MOVERESIZE message.
Since there is a race condition between a client sending the
_NET_WM_MOVERESIZE message and the user releasing the button, Window
Managers are advised to offer some other means to terminate the operation, e.g. by
pressing the ESC key.

5. Application Window Properties

5.1. _NET_WM_NAME

_NET_WM_NAME, UTF8_STRING

The Client SHOULD set this to the title of the window in UTF-8 encoding. If set,
the Window Manager should use this in preference to WM_NAME.

5.2. _NET_WM_VISIBLE_NAME

_NET_WM_VISIBLE_NAME, UTF8_STRING

If the Window Manager displays a window name other than _NET_WM_NAME
the Window Manager MUST set this to the title displayed in UTF-8 encoding.

Rationale: This property is for Window Managers that display a title different from
the _NET_WM_NAME or WM_NAME of the window (i.e. xterm <1>, xterm <2>,
... is shown, but _NET_WM_NAME / WM_NAME is still xterm for each window)
thereby allowing Pagers to display the same title as the Window Manager.

16

Extended Window Manager Hints

5.3. _NET_WM_ICON_NAME

_NET_WM_ICON_NAME, UTF8_STRING

The Client SHOULD set this to the title of the icon for this window in UTF-8
encoding. If set, the Window Manager should use this in preference to
WM_ICON_NAME.

5.4. _NET_WM_VISIBLE_ICON_NAME

_NET_WM_VISIBLE_ICON_NAME, UTF8_STRING

If the Window Manager displays an icon name other than
_NET_WM_ICON_NAME the Window Manager MUST set this to the title
displayed in UTF-8 encoding.

5.5. _NET_WM_DESKTOP

_NET_WM_DESKTOP desktop, CARDINAL/32

Cardinal to determine the desktop the window is in (or wants to be) starting with 0
for the first desktop. A Client MAY choose not to set this property, in which case
the Window Manager SHOULD place it as it wishes. 0xFFFFFFFF indicates that
the window SHOULD appear on all desktops.

The Window Manager should honor _NET_WM_DESKTOP whenever a
withdrawn window requests to be mapped.

The Window Manager should remove the property whenever a window is
withdrawn but it should leave the property in place when it isshutting down, e.g. in
response to losing ownership of the WM_Sn manager selection.

Rationale: Removing the property upon window withdrawal helps legacy
applications which want to reuse withdrawn windows. Not removing the property
upon shutdown allows the next Window Manager to restore windows to their
previous desktops.

A Client can request a change of desktop for a non-withdrawn window by sending a
_NET_WM_DESKTOP client message to the root window:

_NET_WM_DESKTOP
window = the respective client window
message_type = _NET_WM_DESKTOP
format = 32
data.l[0] = new_desktop

17

Extended Window Manager Hints

The Window Manager MUST keep this property updated on all windows.

5.6. _NET_WM_WINDOW_TYPE

_NET_WM_WINDOW_TYPE, ATOM[]/32

This SHOULD be set by the Client before mapping to a list of atoms indicating the
functional type of the window. This property SHOULD be used by the window
manager in determining the decoration, stacking position and other behavior of the
window. The Client SHOULD specify window types in order of preference (the first
being most preferable) but MUST include at least one of the basic window type
atoms from the list below. This is to allow for extension of the list of types whilst
providing default behavior for Window Managers that do not recognize the
extensions.

Rationale: This hint is intended to replace the MOTIF hints.One of the objections
to the MOTIF hints is that they are a purely visual description of the window
decoration. By describing the function of the window, the Window Manager can
apply consistent decoration and behavior to windows of the same type. Possible
examples of behavior include keeping dock/panels on top or allowing pinnable
menus / toolbars to only be hidden when another window has focus (NextStep
style).

_NET_WM_WINDOW_TYPE_DESKTOP, ATOM
_NET_WM_WINDOW_TYPE_DOCK, ATOM
_NET_WM_WINDOW_TYPE_TOOLBAR, ATOM
_NET_WM_WINDOW_TYPE_MENU, ATOM
_NET_WM_WINDOW_TYPE_UTILITY, ATOM
_NET_WM_WINDOW_TYPE_SPLASH, ATOM
_NET_WM_WINDOW_TYPE_DIALOG, ATOM
_NET_WM_WINDOW_TYPE_NORMAL, ATOM

_NET_WM_WINDOW_TYPE_DESKTOP indicates a desktop feature. This can
include a single window containing desktop icons with the same dimensions as the
screen, allowing the desktop environment to have full control of the desktop,
without the need for proxying root window clicks.

_NET_WM_WINDOW_TYPE_DOCK indicates a dock or panel feature. Typically
a Window Manager would keep such windows on top of all other windows.

_NET_WM_WINDOW_TYPE_TOOLBAR and
_NET_WM_WINDOW_TYPE_MENU indicate toolbar and pinnable menu
windows, respectively (i.e. toolbars and menus "torn off" from the main
application). Windows of this type may set the WM_TRANSIENT_FOR hint
indicating the main application window.

18

Extended Window Manager Hints

_NET_WM_WINDOW_TYPE_UTILITY indicates a small persistent utility
window, such as a palette or toolbox. It is distinct from typeTOOLBAR because it
does not correspond to a toolbar torn off from the main application. It’s distinct
from type DIALOG because it isn’t a transient dialog, the user will probably keep it
open while they’re working. Windows of this type may set the
WM_TRANSIENT_FOR hint indicating the main application window.

_NET_WM_WINDOW_TYPE_SPLASH indicates that the window is asplash
screen displayed as an application is starting up.

_NET_WM_WINDOW_TYPE_DIALOG indicates that this is a dialog window. If
_NET_WM_WINDOW_TYPE is not set, then windows with
WM_TRANSIENT_FOR set MUST be taken as this type.

_NET_WM_WINDOW_TYPE_NORMAL indicates that this is a normal, top-level
window. Windows with neither _NET_WM_WINDOW_TYPE nor
WM_TRANSIENT_FOR set MUST be taken as this type.

5.7. _NET_WM_STATE

_NET_WM_STATE, ATOM[]

A list of hints describing the window state. Atoms present inthe list MUST be
considered set, atoms not present in the list MUST be considered not set. The
Window Manager SHOULD honor _NET_WM_STATE whenever a withdrawn
window requests to be mapped. A Client wishing to change the state of a window
MUST send a _NET_WM_STATE client message to the root window (see below).
The Window Manager MUST keep this property updated to reflectthe current state
of the window.

The Window Manager should remove the property whenever a window is
withdrawn, but it should leave the property in place when it is shutting down, e.g. in
response to losing ownership of the WM_Sn manager selection.

Rationale: Removing the property upon window withdrawal helps legacy
applications which want to reuse withdrawn windows. Not removing the property
upon shutdown allows the next Window Manager to restore windows to their
previous state.

Possible atoms are:

_NET_WM_STATE_MODAL, ATOM
_NET_WM_STATE_STICKY, ATOM
_NET_WM_STATE_MAXIMIZED_VERT, ATOM
_NET_WM_STATE_MAXIMIZED_HORZ, ATOM
_NET_WM_STATE_SHADED, ATOM
_NET_WM_STATE_SKIP_TASKBAR, ATOM

19

Extended Window Manager Hints

_NET_WM_STATE_SKIP_PAGER, ATOM
_NET_WM_STATE_HIDDEN, ATOM
_NET_WM_STATE_FULLSCREEN, ATOM
_NET_WM_STATE_ABOVE, ATOM
_NET_WM_STATE_BELOW, ATOM

An implementation MAY add new atoms to this list. Implementations without
extensions MUST ignore any unknown atoms, effectively removing them from the
list. These extension atoms MUST NOT start with the prefix _NET.

_NET_WM_STATE_MODAL indicates that this is a modal dialog box. If the
WM_TRANSIENT_FOR hint is set to another toplevel window, the dialog is modal
for that window; if WM_TRANSIENT_FOR is not set or set to the root window the
dialog is modal for its window group.

_NET_WM_STATE_STICKY indicates that the Window Manager SHOULD keep
the window’s position fixed on the screen, even when the virtual desktop scrolls.

_NET_WM_STATE_MAXIMIZED_{VERT,HORZ} indicates that thewindow is
{vertically,horizontally} maximized.

_NET_WM_STATE_SHADED indicates that the window is shaded.

_NET_WM_STATE_SKIP_TASKBAR indicates that the window should not be
included on a taskbar. This hint should be requested by the application, i.e. it
indicates that the window by nature is never in the taskbar. Applications should not
set this hint if _NET_WM_WINDOW_TYPE already conveys the exact nature of
the window.

_NET_WM_STATE_SKIP_PAGER indicates that the window should not be
included on a Pager. This hint should be requested by the application, i.e. it indicates
that the window by nature is never in the Pager. Applicationsshould not set this hint
if _NET_WM_WINDOW_TYPE already conveys the exact nature ofthe window.

_NET_WM_STATE_HIDDEN should be set by the Window Manager toindicate
that a window would not be visible on the screen if its desktop/viewport were active
and its coordinates were within the screen bounds. The canonical example is that
minimized windows should be in the _NET_WM_STATE_HIDDEN state. Pagers
and similar applications should use _NET_WM_STATE_HIDDENinstead of
WM_STATE to decide whether to display a window in miniature representations of
the windows on a desktop.

Implementation note: if an Application asks to toggle
_NET_WM_STATE_HIDDEN the Window Manager should probably just ignore
the request, since _NET_WM_STATE_HIDDEN is a function of some other aspect
of the window such as minimization, rather than an independent state.

_NET_WM_STATE_FULLSCREEN indicates that the window should fill the
entire screen and have no window decorations. For example, apresentation program

20

Extended Window Manager Hints

would use this hint.

_NET_WM_STATE_ABOVE indicates that the window should be ontop of most
windows (seeSection 7.10for details).

_NET_WM_STATE_BELOW indicates that the window should be below most
windows (seeSection 7.10for details).

_NET_WM_STATE_ABOVE and _NET_WM_STATE_BELOW are mainly meant
for user preferences and should not be used by applications e.g. for drawing
attention to their dialogs (the Urgency hint should be used in that case, seeSection
7.4).’

To change the state of a mapped window, a Client MUST send a
_NET_WM_STATE client message to the root window (window is the respective
window, type _NET_WM_STATE, format 32, l[0]=<the action, as listed below>,
l[1]=<First property to alter>, l[2]=<Second property to alter>). This message
allows two properties to be changed simultaneously, specifically to allow both
horizontal and vertical maximization to be altered together. l[2] MUST be set to
zero if only one property is to be changed. l[0], the action, MUST be one of:

_NET_WM_STATE_REMOVE 0 /* remove/unset property */
_NET_WM_STATE_ADD 1 /* add/set property */
_NET_WM_STATE_TOGGLE 2 /* toggle property */

See also the implementation notes onurgencyandfixed size windows.

5.8. _NET_WM_ALLOWED_ACTIONS

_NET_WM_ALLOWED_ACTIONS, ATOM[]

A list of atoms indicating user operations that the Window Manager supports for
this window. Atoms present in the list indicate allowed actions, atoms not present in
the list indicate actions that are not supported for this window. The Window
Manager MUST keep this property updated to reflect the actions which are
currently "active" or "sensitive" for a window. Taskbars, Pagers, and other tools use
_NET_WM_ALLOWED_ACTIONS to decide which actions should bemade
available to the user.

Possible atoms are:

_NET_WM_ACTION_MOVE, ATOM
_NET_WM_ACTION_RESIZE, ATOM
_NET_WM_ACTION_MINIMIZE, ATOM
_NET_WM_ACTION_SHADE, ATOM
_NET_WM_ACTION_STICK, ATOM
_NET_WM_ACTION_MAXIMIZE_HORZ, ATOM

21

Extended Window Manager Hints

_NET_WM_ACTION_MAXIMIZE_VERT, ATOM
_NET_WM_ACTION_FULLSCREEN, ATOM
_NET_WM_ACTION_CHANGE_DESKTOP, ATOM
_NET_WM_ACTION_CLOSE, ATOM

An implementation MAY add new atoms to this list. Implementations without
extensions MUST ignore any unknown atoms, effectively removing them from the
list. These extension atoms MUST NOT start with the prefix _NET.

Note that the actions listed here are those that theWindow Manager will honor for
this window. The operations must still be requested throughthe normal mechanisms
outlined in this specification. For example, _NET_WM_ACTION_CLOSE does not
mean that clients can send a WM_DELETE_WINDOW message to this window; it
means that clients can use a _NET_CLOSE_WINDOW message to ask the Window
Manager to do so.

Window Managers SHOULD ignore the value of
_NET_WM_ALLOWED_ACTIONS when they initially manage a window. This
value may be left over from a previous Window Manager with different policies.

_NET_WM_ACTION_MOVE indicates that the window may be movedaround the
screen.

_NET_WM_ACTION_RESIZE indicates that the window may be resized.
(Implementation note: Window Managers can identify a non-resizable window
because its minimum and maximum size in WM_NORMAL_HINTS will be the
same.)

_NET_WM_ACTION_MINIMIZE indicates that the window may be iconified.

_NET_WM_ACTION_SHADE indicates that the window may be shaded.

_NET_WM_ACTION_STICK indicates that the window may have its sticky state
toggled (as for _NET_WM_STATE_STICKY). Note that this state has to do with
viewports, not desktops.

_NET_WM_ACTION_MAXIMIZE_HORZ indicates that the window may be
maximized horizontally.

_NET_WM_ACTION_MAXIMIZE_VERT indicates that the window may be
maximized vertically.

_NET_WM_ACTION_FULLSCREEN indicates that the window may be brought
to fullscreen state.

_NET_WM_ACTION_CHANGE_DESKTOP indicates that the windowmay be
moved between desktops.

_NET_WM_ACTION_CLOSE indicates that the window may be closed (i.e. a
WM_DELETE_WINDOW message may be sent).

22

Extended Window Manager Hints

5.9. _NET_WM_STRUT

_NET_WM_STRUT, left, right, top, bottom, CARDINAL[4]/32

This property MUST be set by the Client if the window is to reserve space at the
edge of the screen. The property contains 4 cardinals specifying the width of the
reserved area at each border of the screen. The order of the borders is left, right, top,
bottom. The client MAY change this property at any time, therefore the Window
Manager MUST watch out for property notify events.

The purpose of struts is to reserve space at the borders of thedesktop. This is very
useful for a docking area, a taskbar or a panel, for instance.The Window Manager
should know about this reserved space in order to be able to preserve the space.
Also maximized windows should not cover that reserved space.

Rationale: A simple "do not cover" hint is not enough for dealing with e.g.
auto-hide panels.

Notes: An auto-hide panel SHOULD set the strut to be its minimum, hidden size. A
"corner" panel that does not extend for the full length of a screen border SHOULD
only set one strut.

5.10. _NET_WM_ICON_GEOMETRY

_NET_WM_ICON_GEOMETRY, x, y, width, height, CARDINAL[4]/32

This optional property MAY be set by stand alone tools like a taskbar or an
iconbox. It specifies the geometry of a possible icon in case the window is iconified.

Rationale: This makes it possible for a Window Manager to display a nice
animation like morphing the window into its icon.

5.11. _NET_WM_ICON

_NET_WM_ICON CARDINAL[][2+n]/32

This is an array of possible icons for the client. This specification does not stipulate
what size these icons should be, but individual desktop environments or toolkits
may do so. The Window Manager MAY scale any of these icons to anappropriate
size.

This is an array of 32bit packed CARDINAL ARGB with high byte being A, low
byte being B. The first two cardinals are width, height. Data is in rows, left to right
and top to bottom.

23

Extended Window Manager Hints

5.12. _NET_WM_PID

_NET_WM_PID CARDINAL/32

If set, this property MUST contain the process ID of the client owning this window.
This MAY be used by the Window Manager to kill windows which donot respond
to the _NET_WM_PING protocol.

If _NET_WM_PID is set, the ICCCM-specified property
WM_CLIENT_MACHINE MUST also be set. While the ICCCM only requests that
WM_CLIENT_MACHINE is set “ to a string that forms the name of the machine
running the client as seen from the machine running the server” conformance to this
specification requires that WM_CLIENT_MACHINE be set to thefully-qualified
domain name of the client’s host.

See also the implementation notes onkilling hung processes.

5.13. _NET_WM_HANDLED_ICONS

_NET_WM_HANDLED_ICONS

This property can be set by a Pager on one of its own toplevel windows to indicate
that the Window Manager need not provide icons for iconified windows, for
example if it is a taskbar and provides buttons for iconified windows.

6. Window Manager Protocols

6.1. _NET_WM_PING
This protocol allows the Window Manager to determine if the Client is still
processing X events. This can be used by the Window Manager todetermine if a
window which fails to close after being sent WM_DELETE_WINDOW has
stopped responding or has stalled for some other reason, such as waiting for user
confirmation. A Client SHOULD indicate that it is willing to participate in this
protocol by listing _NET_WM_PING in the WM_PROTOCOLS property of the
client window.

A Window Manager can use this protocol at any time by sending aclient message
as follows:

type = ClientMessage
window = the respective client window

24

Extended Window Manager Hints

message_type = WM_PROTOCOLS
format = 32
data.l[0] = _NET_WM_PING
data.l[1] = timestamp

A participating Client receiving this message MUST send it back to the root
window immediately, by setting window = root, and calling XSendEvent. The
Client MUST NOT alter the timestamp, as this can be used by theWindow
Manager to uniquely identify the ping.

The Window Manager MAY kill the Client (using _NET_WM_PID) if it fails to
respond to this protocol within a reasonable time.

See also the implementation notes onkilling hung processes.

7. Implementation notes

7.1. Desktop/workspace model
This spec assumes a desktop model that consists of one or morecompletely
independent desktops which may or may not be larger than the screen area. When a
desktop is larger than the screen it is left to the Window Manager if it will
implement scrolling or paging.

7.2. File Manager desktop
This spec suggests implementing the file manager desktop by mapping a
desktop-sized window (no shape) to all desktops, with
_NET_WM_WINDOW_TYPE_DESKTOP. This makes the desktop focusable and
greatly simplifies implementation of the file manager. It is also faster than managing
lots of small shaped windows. The file manager draws the background on this
window. There should be a root property with a window handle for use in
applications that want to draw the background (xearth).

7.3. Implementing enhanced support for application
transient windows

If the WM_TRANSIENT_FOR property is set to None or Root window, the
window should be treated as a transient for all other windowsin the same group. It

25

Extended Window Manager Hints

has been noted that this is a slight ICCCM violation, but as this behavior is pretty
standard for many toolkits and window managers, and is extremely unlikely to
break anything, it seems reasonable to document it as standard.

7.4. Urgency
Windows expecting immediate user action should indicate this using the urgency bit
in the WM_HINTS.flags property, as defined in the ICCCM.

7.5. Fixed size windows
Windows can indicate that they are non-resizable by settingminheight = maxheight
and minwidth = maxwidth in the ICCCM WM_NORMAL_HINTS property. The
Window Manager MAY decorate such windows differently.

7.6. Pagers and Taskbars
This specification attempts to make reasonable provisions for window manager
independent pagers and taskbars. Window Managers that require / desire additional
functionality beyond what can be achieved using the mechanisms set out in this
specification may choose to implement their own pagers, which communicate with
the Window Manager using further, window manager specific hints, or some other
means.

Pagers should decide whether to show a miniature version of awindow using the
following guidelines:

• If either _NET_WM_STATE_SKIP_PAGER or _NET_WM_STATE_HIDDEN
are set on a window, then the pager should not show that window.

• The pager may choose not to display windows with certain semantic types; this
spec has no recommendations, but common practice is to avoiddisplaying
_NET_WM_WINDOW_TYPE_DOCK for example.

• If the _NET_WM_STATE_SKIP_PAGER and _NET_WM_STATE_HIDDEN
hints are not present, and the Window Manager claims to support
_NET_WM_STATE_HIDDEN, then the window should be shown if it’s in either
NormalState or IconicState.

• For Window Managers that do not support _NET_WM_STATE_HIDDEN, the
pager should not show windows in IconicState. These Window Managers are
probably using an older version of this specification.

26

Extended Window Manager Hints

7.7. Window Geometry
Window manager implementors should refer to the ICCCM for definitive
specifications of how to handle MapRequest and ConfigureRequest events.
However, since these aspects of the ICCCM are easily misread, this document
offers the following clarifications:

• Window Managers MUST honor the win_gravity field of
WM_NORMAL_HINTS for both MapRequestand ConfigureRequest events
(ICCCM Version 2.0, §4.1.2.3 and §4.1.5)

• When generating synthetic ConfigureNotify events, the position given MUST be
the top-left corner of the client window in relation to the origin of the root
window (i.e., ignoring win_gravity) (ICCCM Version 2.0, §4.2.3)

• Window Managers maintain a reference point for each client window and place
the window relative to this reference point depending on thewindow’s
win_gravity as follows:

win_gravity: placed at the reference point

StaticGravity the left top corner of the client window

NorthWestGravity the left top corner of the frame window

NorthGravity the center of the frame window’s top
side

NorthEastGravity the right top corner of the frame window

EastGravity the center of the frame window’s right
side

SouthEastGravity the right bottom corner of the frame
window

SouthGravity the center of the frame window’s bottom
side

SouthWestGravity the left bottom corner of the frame
window

WestGravity the center of the frame window’s left
side

CenterGravity the center of the frame window

• Applications are free to change their win_gravity setting at any time.

27

Extended Window Manager Hints

If an Application changes its win_gravity then the Window Manager should
adjust the reference point, so that the client window will not move as the result.
For example if the Application’s win_gravity was NorthWestGravity and
reference point was at the top-left corner of the frame window, then after change
of win_gravity to SouthEastGravity the reference point should be adjusted to
point to the lower-right corner of the frame.

Note: Changing the win_gravity for a single configure request and back
afterwards is unlikely to work as intended, due to a race condition. The
window manager sees a property notify for WM_NORMAL_HINTS, followed
by the configure request, followed by another property notify for
WM_NORMAL_HINTS. By the time the window manager gets around to
request the changed WM_NORMAL_HINTS in response to the first
property notify, the server may have already processed the second property
change.

If the window manager supports it, applications should use
_NET_MOVERESIZE_WINDOW with a specified gravity to avoid this
problem.

• If the Application requests a new position (x, y) (and possibly also a new size),
the Window Manager calculates a new reference point (ref_x,ref_y), based on
the client window’s (possibly new) size (width, height), border width (bw) and
win_gravity as explained in the table below.

The Window Manager will use the new reference point until thenext request for
a new position.

win_gravity: ref_x: ref_y:

StaticGravity x y

NorthWestGravity x-bw y-bw

NorthGravity x+(width/2) y-bw

NorthEastGravity x+width+bw y-bw

EastGravity x+width+bw y+(height/2)

SouthEastGravity x+width+bw y+height+bw

SouthGravity x+(width/2) y+height+bw

SouthWestGravity x-bw y+height+bw

WestGravity x-bw y+(height/2)

CenterGravity x+(width/2) y+(height/2)

28

Extended Window Manager Hints

• If an Application requests just a new size, its reference point does not move. So
for example if client window has win_gravity SouthEastGravity and is resized,
the bottom right corner of its frame will not move but insteadthe top left corner
will be adjusted by the difference in size.

• When calculating the reference point at the time of initial placement, the Window
Manager should take the initial window’s size into consideration, as if it was the
frame for this window.

7.8. Window-in-Window MDI
The authors of this specification acknowledge that there is no standard method to
allow the Window Manager to manage windows that are part of a
Window-in-Window MDI application. Application authors are advised to use some
other form of MDI, or to propose a mechanism to be included in afuture revision of
this specification.

7.9. Killing Hung Processes
If processes fail to respond to the _NET_WM_PING protocol _NET_WM_PID
may be used in combination with the ICCCM specified WM_CLIENT_MACHINE
to attempt to kill a process.

WM_CLIENT_MACHINE is usually set by calling XSetWMProperties(). The
hostname for the current host can be be retrieved using gethostname(), when
gethostname() is not available on the platform implementors may use the value of
the nodename field of struct utsname as returned by uname(). Note also that the
value of WM_CLIENT_MACHINE is not guaranteed to be a fully fully-qualified
domain name of the host. An example of how to retrieve the hostname:

int net_get_hostname (char *buf, size_t maxlen)
{
#ifdef HAVE_GETHOSTNAME
if (buf == NULL) return 0;

gethostname (buf, maxlen);
buf [maxlen - 1] = ’\0’;

return strlen(buf);
#else
struct utsname name;
size_t len;

if (buf == NULL) return 0;

29

Extended Window Manager Hints

uname (&name);
len = strlen (name.nodename);

if (len >= maxlen) len = maxlen - 1;
strncpy (buf, name.nodename, len);
buf[len] = ’\0’;

return len;
#endif
}

7.10. Stacking order
To obtain good interoperability between different DesktopEnvironments, the
following layered stacking order is recommended, from the bottom:

• windows of type _NET_WM_TYPE_DESKTOP

• windows having state _NET_WM_STATE_BELOW

• windows not belonging in any other layer

• windows of type _NET_WM_TYPE_DOCK (unless they have state
_NET_WM_TYPE_BELOW) and windows having state
_NET_WM_STATE_ABOVE

• focused windows having state _NET_WM_STATE_FULLSCREEN

Windows that are transient for another window should be keptabove this window.

The window manager may choose to put some windows in different stacking
positions, for example to allow the user to bring currently aactive window to the
top and return it back when the window looses focus.

8. References

[UTF8]

F. Yergeau,"UTF-8, a transformation format of ISO 10646", RFC 2279

30

Extended Window Manager Hints

[ICCCM]

David Rosenthal and Stuart W. Marks, "Inter-Client Communication
Conventions Manual (Version 2.0)", X Consortium Standard,X Version 11,
Release 6.3

9. Copyright
Copyright (C) 2000, 2001, 2002 See Contributors List

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shallbe included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10. Contributors
Sasha Vasko

Bradley T. Hughes

Dominik Vogt

Havoc Pennington

Jeff Raven

Jim Gettys

John Harper

Julian Adams

31

Extended Window Manager Hints

Matthias Ettrich

Micheal Rogers

Nathan Clemons

Tim Janik

Tomi Ollila

Sam Lantinga

The Rasterman

Paul Warren

Owen Taylor

Marko Macek

Greg Badros

Matthias Clasen

David Rosenthal

Lubos Lunak

11. Change history

11.1. Changes since 1.2

• Rewrote the implementation notes on "Window Movement", retitled it to
"Window Geometry".

• Rewrote the implementation notes on "Urgency", making it clear that the hint is
not just about dialogs.

• Fixed the specification of the X and Y members of _NET_DESKTOP_LAYOUT
and renamed them to columns and row for clarity.

• Change the description of _NET_WM_STATE_MODAL to no longerrequire
apps to break the ICCCM for group-modal windows, but still support the
WM_TRANSIENT_FOR=root dialect.

32

Extended Window Manager Hints

11.2. Changes since 1.1

• Changed WM_CLIENT_NAME(STRING) from suggested to required for
_NET_WM_PID.

• Specification and sample code for the content of
WM_CLIENT_NAME(STRING).

• Added _NET_WM_WINDOW_TYPE_SPLASH,
_NET_WM_WINDOW_TYPE_UTILITY.

• Added _NET_WM_STATE_FULLSCREEN.

• Added _NET_WM_ALLOWED_ACTIONS.

• Added _NET_WM_STATE_HIDDEN and clarified purpose of
_NET_WM_STATE_SKIP_PAGER and _NET_WM_STATE_SKIP_TASKBAR.
Changed section on virtual desktop implementation to suggest ICCCM
compliance regarding IconicState, using _NET_WM_STATE_HIDDEN to avoid
confusion. Added implementation note for pagers on when to display a window.

• Added button field and new directions for keyboard-initiated actions to the
_NET_WM_MOVERESIZE message.

• Added advice on removing _NET_WM_STATE and _NET_WM_DESKTOP
when a window is withdrawn.

• Added _NET_DESKTOP_LAYOUT to allow a Pager to specify inter-desktop
geometry.

• Added _NET_SHOWING_DESKTOP.

• Added _NET_WM_STATE_ABOVE and _NET_WM_STATE_BELOW and a
recommended layered stacking order.

• Added _NET_MOVERESIZE_WINDOW.

• Improve markup of citations.

• Explain _NET_DESKTOP_GEOMETRY and _NET_WM_HANDLED_ICONS
in more detail and improve the explanation of WM_CLIENT_MACHINE in
Section 7.9.

• Add Lubos Lunak to the list of contributors.

11.3. Changes since 1.0

• Fix doctype, add author info, update data.

33

Extended Window Manager Hints

• Change specification description wording to be more inclusive, and to reflect the
joint nature of the specification.

• Fix miscellaneous typographical, grammar and spelling errors.

• Clarified _NET_SUPPORTED to include ALL atoms, not just the property
names.

• Various corrections to use of MUST and SHOULD.

• Fix problem in _NET_WM_ICON where ’bytes’ should have been ’cardinals’

• Replaced ISO-8559-1 characters with entities.

11.4. Changes since 1.0pre5

• Change history moved to end.

• UTF-8 Reference updated.

• Window Gravity information updated.

• Copyright Added.

• Minor typo corrections.

11.5. Changes since 1.0pre4

• Clarified the interpretation of client-provided geometries on large desktops.

• Added more explanation for _NET_DESKTOP_NAMES.

• Added _NET_WM_ICON_NAME and _NET_WM_VISIBLE_ICON_NAME.

• Tried to improve the wording of _NET_WM_STRUT explanation.

• Changed _NET_WORKAREA to an array of viewport-relative geometries.

• Updated list of “dependent” properties for _NET_NUMBER_OF_DESKTOPS to
include _NET_WORKAREA and _NET_DESKTOP_VIEWPORT.

• Tidied formatting of all client messages.

11.6. Changes since 1.0pre3

• Added information about common non-ICCCM features.

34

Extended Window Manager Hints

• Added explanation of sending messages to the root window.

• Removed XA_ prefix from type names.

• Clarified that “mapping order” refers to inital mapping and specify the directions
of both orders.

• Clarified that desktops have a common size specified by
_NET_DESKTOP_GEOMETRY.

• Rewrote explanation of _NET_DESKTOP_VIEWPORT.

• Tidied formatting of _NET_CURRENT_DESKTOP.

• Replaced “window handle” by “window ID”.

• Tidied formatting of _NET_WORKAREA.

• Rewrote the motivation for _NET_VIRTUAL_ROOTS.

• Added advice on Pointer grabs to _NET_WM_MOVERESIZE.

• Fixed typos in _NET_WM_STATE.

• Added _NET_WM_STATE_SKIP_PAGER.

• Tidied formatting of _NET_WM_STRUT.

• Tidied formatting of _NET_WM_ICON_GEOMETRY.

11.7. Changes since 1.0pre2

• _NET_SET_NUMBER_OF_DESKTOPS ->
_NET_NUMBER_OF_DESKTOPS for consistency.

• _NET_WM_VISIBLE_NAME_STRING -> _NET_WM_VISIBLE_NAME for
consistency.

• _NET_WM_STATE: added explanation of permitted extensions. Added
explanation of being set / not set.

• Spellchecked, corrected various typos.

• UTF8 -> UTF-8 for consistency.

• added references to the ICCCM an UTF-8 (incomplete).

• added data and event formats where missing.

• clarified _NET_SUPPORTING_WM_CHECK.

• fixed formatting of _NET_CLOSE_WINDOW message.

35

Extended Window Manager Hints

11.8. Changes since 1.0pre1

• Removed implementation note concerning Gnome’s (potential) file manager
behavior.

• The Window Movement section of the implementation notes hasbeen revised.

11.9. Changes since 1.9f

• Revised revision number for first accepted release 1.9XX -> 1.0preXX.

• Prerequisites for adoption of this specification added.

• Tidied formatting of _NET_CURRENT_DESKTOP for consistency.

• Tidied formatting of _NET_ACTIVE_WINDOW for consistency.Removed
doubled text.

• Tidied formatting of _NET_WM_DESKTOP for consistency.

• Killing Hung Processes implementation note added. _NET_WM_PID and
_NET_WM_PING now link to this.

• Clarified x_root and y_root meaning for _NET_WM_MOVERESIZE.

• Added contributor list.

11.10. Changes since 1.9e

• Added _NET_WM_VISIBLE_NAME_STRING

• Removed ambiguity from _NET_NUMBER_OF_DESKTOPS and
_NET_DESKTOP_NAMES in combination.

• Set _NET_WM_MOVERESIZE format to 32 for consistency.

• Removed _NET_PROPERTIES.

• Removed comment from _NET_WM_MOVERESIZE.

11.11. Changes since 1.9d

• Added _NET_VIRTUAL_ROOTS

36

Extended Window Manager Hints

• Added note about ICCCM compliant window moves.

• Added _NET_WM_HANDLED_ICONS

• Added _NET_SUPPORTING_WM_CHECK

• Removed degrees of activation

11.12. Changes since 1.9c

• Removed packaging of hints into 2 X properties. Jim Gettys points out that the
performance gains of fewer round trips can be better achieved using Xlib
routines.

• Clarified that _NET_DESKTOP_VIEWPORT is in pixels

• _NET_DESKTOP_VIEWPORT is now an array, one for each desktop, to allow
for different active viewports on different desktops

• _NET_WM_STRUT now only applies on desktops on which the client is visible

• Introduced RFC 2119 language, and attempted to clarify the roles of the Window
Manager, Pagers and Applications

• Added _NET_WM_NAME

• _NET_DESKTOP_NAMES now in UTF8

• Desktops now start from 0

• Added _NET_WM_PID

• Added _NET_WM_PING protocol

• Added _NET_WM_STATE_SKIP_TASKBAR

11.13. Changes since 1.9b

• Removed _NET_NUMBER_OF_DESKTOPS client message, as it overlaps
unnecessarily with _NET_{INSERT/DELETE}_DESKTOP.

• Replaced _NET_WM_LAYER and _NET_WM_HINTS with
_NET_WM_WINDOW_TYPE functional hint.

• Changed _NET_WM_STATE to a list of atoms, for extensibility.

• Expanded description of _NET_WORKAREA and _NET_WM_STRUT.

• Removed _NET_WM_SIZEMOVE_NOTIFY protocol.

37

Extended Window Manager Hints

• Added degrees of activation to _NET_ACTIVE_WINDOW client message

• Added _NET_WM_ICON

• My comments are in [[]]. Comments from Marko’s draft are in [[MM:]]

38

