Extended Window Manager
Hints

X Desktop
Group(http://www.freedesktop.org)

1. Introduction

1.1. Version

This is Draft version 1.3 of the Extended Window Manager Bi{{gWMH) spec,
updated January 3, 2003. The canonical home for this doduisien
http://www.freedesktop.org(http://www.freedesktap/standards/wm-spec.html),
which also contains directions for reporting bugs or cdmiting to future versions.

1.2. What is this spec?

This spec defines interactions between window managerb¢cagns, and the
utilities that form part of a desktop environment. It buitisthe Inter-Client
Communication Conventions ManudCICCM], which defines window manager
interactions at a lower level. The ICCCM does not provide svayimplement many
features that modern desktop users expect. The GNOME andd€SEop projects
originally developed their own extensions to the ICCCM tpsurt these features;
this spec replaces those custom extensions with a stamddrsit of ICCCM
additions that any desktop environment can adopt.

1.3. Language used in this specification

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHAL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as desatiin RFC 2119.

Extended Window Manager Hints

The key words "Window Manager" refer to a window manager Wiscadopting
this specification. "Pager" refers to desktop utility apations, including pagers
and taskbars. "Application” refers to other clients. "6t& refers to Pagers and
Applications ie. all X clients, except for the Window Manage

1.4. Prerequisites for adoption of this specification

Window Managers and Clients which aim to fulfill this spe@tion MUST adhere
to the ICCCM on which this specification builds. If this sgegtion explicitly
modifies the ICCCM Window Managers and Clients MUST fulfikk e
modifications.

2. Non-ICCCM features

There is a number of window management features or behavluch are not
specified in the ICCCM, but are commonly met in modern windoanagers and
desktop environments.

2.1. Additional States

The ICCCM allows window managers to implement additionalduaw states,
which will appear to clients as substates of NormalStatelemgicState. Two
commonly met examples are Maximized and Shaded. A windovwagemmay
implement these as proper substates of NormalState and &tate, or it may treat
them as independent flags, allowing e.g. a maximized winddveticonified and to
re-appear as maximized upon de-iconification.

2.1.1. Maximization

Maximization is a very old feature of window managers. Theas even a
ZoomedState in early ICCCM drafts. Maximizing a window sldagive it as much
of the screen area as possible (this may not be the full semean but only a
smaller 'workarea’, since the window manager may have veskcertain areas for
other windows). A window manager is expected to remembegdoenetry of a
maximized window and restore it upon de-maximization. Modgindow
managers typically allow separate horizontal and verticakimization.

With the introduction of the Xinerama extension in X11 Réwaximization has
become more involved. Xinerama allows a screen to spanpieitionitors in a
freely configurable geometry. In such a setting, maximiazngndow would ideally

Extended Window Manager Hints

not grow it to fill the whole screen, but only the monitor it lsosvn on. There are of
course borderline cases for windows crossing monitor batesl, and 'real’
maximization to the full screen may sometimes be useful.

2.1.2. Shading

Some desktop environments offer shading (also known agxodis an alternative
to iconification. A shaded window typically shows only thigetbar, the client
window is hidden, thus shading is not useful for windows whace not decorated
with a titlebar.

2.2. Modality

The WM_TRANSIENT_FOR hint of the ICCCM allows clients to sifg that a
toplevel window may be closed before the client finishes. gidgl example of a
transient window is a dialog. Some dialogs can be open fongfione, while the
user continues to work in the main window. Other dialogs hauge closed before
the user can continue to work in the main window. This prgpisrtalled modality.
While clients can implement modal windows in an ICCCM coraptiway using
the globally active input model, some window managers atgaport for handling
modality.

2.3. Large Desktops

The window manager may offer to arrange the managed windovaesdesktop that
is larger than the root window. The screen functions as apaeiron this large
desktop. Different policies regarding the positioninglté viewport on the desktop
can be implemented: The window manager may only allow thepost position to
change in increments of the screen size (paging) or it mayadtbitrary positions
(scrolling).

To fulfill the ICCCM principle that clients should behave teme regardless
whether a window manager is running or not, window managéiswimplement
large desktops must interpret all client-provided geoiegtwith respect to the
current viewport.

2.3.1. Implementation note

There are two options for implementing a large desktop: Tiseif to keep the
managed windows (or, if reparenting, their frames) as ohilef the root window.

Extended Window Manager Hints

Moving the viewport is achieved by moving all managed windawthe opposite
direction.

The second alternative is to reparent all managed windoagiedicated large
window (somewhat inappropriately called a 'virtual root)oving the viewport is
then achieved by moving the virtual root in the oppositedtios.

Both alternatives are completely ICCCM compliant, althotite second one may
be somewhat problematic for clients trying to figure out thedew manager
decorations around their toplevel windows and for clientsg to draw
background images on the root window.

2.4. Sticky windows

A window manager which implements a large desktop typicatiigrs a way for the
user to make certain windows ’stick to the glass’, i.e. theselows will stay at the
same position on the screen when the viewport is moved.

2.5. Virtual Desktops

Most X servers have only a single screen. The window managgmnintualize this
resource and offer multiple so-called virtual desktop$’which only one can be
shown on the screen at a time. There is some variation amerfgdkures of virtual
desktop implementations. There may be a fixed number of deskér new ones
may be created dynamically. The size of the desktops may ee @xvariable. If
the desktops are larger than the root window, their vievgp@eeSection 2.3 may
be independent or forced to be at the same position.

A window manager which implements virtual desktops gemeddfers a way for
the user to move clients between desktops. Clients may tde&edlito occupy more
than one desktop simultaneously.

2.5.1. Implementation note

There are at least two options for implementing virtual deig&. The first is to use
multiple virtual roots (se&ection 2.3.1and change the current desktop by
manipulating the stacking order of the virtual roots. TBisompletely ICCCM
compliant, but has the issues outlinedSection 2.3.1

The second option is to keep all managed windows as childrdregoot window
and unmap the frames of those which are not on the currentafesbnmapped
windows should be placed in IconicState, according to ti&d®!. Windows which
are actually iconified or minimized should have the NET_WBWATE_HIDDEN

Extended Window Manager Hints

property set, to communicate to pagers that the window shaatl be represented
as "onscreen."

2.6. Pagers

A pager offers a different Ul for window management taskshtiws a miniature
view of the desktop(s) representing managed windows bylsewangles and
allows the user to initiate various window manager actionsanipulating these
representations. Typically offered actions are activafgeeSection 2.8, moving,
restacking, iconification, maximization and closing. Oa@é desktop, the pager
may offer a way to move the viewport. On virtual desktops,pghger may offer
ways to move windows between desktops and to change thentdesktop.

2.7. Taskbars

A taskbar offers another Ul for window management taskypically represents
client windows as a list of buttons labelled with the windathes and possibly
icons. Pressing a button initiates a window manager actiahe represented
window, typical actions being activation and iconificatitmenvironments with a
taskbar, icons are often considered inappropriate, shme&onified windows are
already represented in the taskbar.

2.8. Activation

In the X world, activating a window means to give it the inpoitdis. This may not
be possible if the window is unmapped, because it is on ardiffedesktop. Thus,
activating a window may involve additional steps like mayinto the current
desktop (or changing to the desktop the window is on), défgioig it or raising it.

2.9. Animated iconification

Some window managers display some form of animation whei¢daifying a
window. This may be a line drawing connecting the cornersiefwindow with the
corners of the icon or the window may be opaquely moved andeg@®n some
trajectory joining the window location and the icon locatio

Extended Window Manager Hints
2.10. Window-in-window MDI

Window-in-window MDI is a multiple document interface knorom MS
Windows platforms. Programs employing it have a singleleye! window which
contains a workspace which contains the subwindows for ple& documents.
These subwindows are decorated with window manager frantesan be
manipulated within their parent window just like ordinaoptlevel windows on the
root window.

2.11. Layered stacking order

Some window managers keep the toplevel windows not in assiitgdar stack, but
subdivide the stack into several layers. There is a lot aitian among the features
of layered stacking order implementations. The numberydriamay or may not be
fixed. The layer of a toplevel window may be explicit and dilgmodifiable or
derived from other properties of the window, e.g. tyee of the window. The
stacking order may or may not be strict, i.e. not allow the tiseaise or lower
windows beyond their layer.

2.12. Scope of this spec

This spec tries to address the following issues:

- Allow clients to influence their initial state with respeotrmaximization,
shading, stickiness, desktop, stacking order.

- Improve the window managers ability to vary window decanasi and maintain
the stacking order by allowing clients to hint the window rager about the type
of their windows.

- Enable pagers and taskbars to be implemented as sepaeaitts elnd allow them
to work with any compliant window manager.

This spec doesn’t cover any of the following:

« Other IPC mechanisms like ICE or Corba.

- Window manager configuration.

- Window manager documentation.

- Clients appearing on a proper subset of desktops.

« Window-in-window MDI.

Extended Window Manager Hints

The window manager is supposed to be in charge of window nesmeagt policy, so
that there is consistent behavior on the user’s screen nemaio wrote the clients.

The spec offers a lot of external control about window manag#ons. This is
intended mainly to allow pagers, taskbars and similar wwmdwanager Uls to be
implemented as separate clients. "Ordinary" clients shdulise these except
maybe in response to a direct user request (i.e. settingfeyaption to start
maximized or specifying a -desk n command line argument).

3. Root Window Properties (and Related
Messages)

Whenever this spec speaks about “sending a message to tiveimdow”, it is
understood that the client is supposed to create a Cliersfesevent with the
specified contents and send it by using a SendEvent requibstheifollowing

arguments:

desti nation r oot

pr opagat e Fal se

event - mask (SubstructureNotify| SubstructureRedirect)
event the specified CientMssage

3.1. NET_SUPPORTED
_NET_SUPPORTED, ATOM]/ 32

This property MUST be set by the Window Manager to indicat&ctiints it
supports. For example: considering _NET_WM_STATE bothk #tom and all
supported states e.g. NET_WM_STATE_MODAL, NET_WM_SEABTICKY,
would be listed. This assumes that backwards incompatitdages will not be
made to the hints (without being renamed).

3.2. NET_CLIENT _LIST

_NET_CLI ENT_LI ST, W NDOW]/ 32
_NET_CLI ENT_LI ST_STACKI NG, W NDOW] / 32

Extended Window Manager Hints

These arrays contain all X Windows managed by the Window gena
_NET_CLIENT_LIST has initial mapping order, starting witie oldest window.
_NET_CLIENT_LIST_STACKING has bottom-to-top stackingler. These
properties SHOULD be set and updated by the Window Manager.

3.3. NET_NUMBER_OF_DESKTOPS
_NET_NUVBER OF DESKTOPS, CARDI NAL/ 32

This property SHOULD be set and updated by the Window Mantgedicate the
number of virtual desktops.

A Pager can request a change in the number of desktops byhgeadi
_NET_NUMBER_OF_DESKTOPS message to the root window:

_NET_NUMBER_OF_DESKTOPS
nessage _type = _NET_NUMBER OF DESKTOPS
format = 32
data.l[0] = new_nunber_of desktops

The Window Manager is free to honor or reject this requeshdfrequest is
honored NET_NUMBER_OF DESKTOPS MUST be set to the new raurab
desktops, NET_VIRTUAL_ ROOTS MUST be set to store the nemlner of
desktop virtual root window IDs and _NET_DESKTOP_VIEWPO&Td
_NET_WORKAREA must also be changed accordingly. The
_NET_DESKTOP_NAMES property MAY remain unchanged.

If the number of desktops is shrinking and _NET_CURRENT_REGSP is out of
the new range of available desktops, then this MUST be sékttast available
desktop from the new set. Clients that are still present shtdes that are out of
the new range MUST be moved to the very last desktop from theseé For these
_NET_WM_DESKTOP MUST be updated.

3.4. NET_DESKTOP_GEOMETRY

_NET_DESKTOP_GEOVETRY wi dt h, hei ght, CARDI NAL[2]/ 32

Array of two cardinals that defines the common size of all tigsk (this is equal to
the screen size if the Window Manager doesn’t support laeg&tdps, otherwise
it's equal to the virtual size of the desktop). This prope&StyOULD be set by the
Window Manager.

A Pager can request a change in the desktop geometry by gemdin
_NET_DESKTOP_GEOMETRY client message to the root window:

Extended Window Manager Hints

_NET_DESKTOP_GEOVETRY
nmessage_type = _NET_DESKTOP_GEOVETRY
format = 32
data.l[0] = new width
data.l[1] = new_hei ght

The Window Manager MAY choose to ignore this message, in lvbase
_NET_DESKTOP_GEOMETRY property will remain unchanged.

3.5. _NET_DESKTOP_VIEWPORT

_NET_DESKTOP_VI EWPORT X, y, CARDINAL[][2]/32

Array of pairs of cardinals that define the top left corneraéle desktop’s viewport.
For Window Managers that don’t support large desktops NEST always be set
to (0,0).

A Pager can request to change the viewport for the currektajeby sending a
_NET_DESKTOP_VIEWPORT client message to the root window:

_NET_DESKTOP_VI EWPORT
nmessage_type = _NET_DESKTOP_VI EWPORT

format = 32
data.l[0] = new_vx
data.l[1] = new_ vy

The Window Manager MAY choose to ignore this message, in lvbase
_NET_DESKTOP_VIEWPORT property will remain unchanged.

3.6. NET_CURRENT DESKTOP

_NET_CURRENT_DESKTOP deskt op, CARDI NAL/ 32

The index of the current desktop. This is always an integevéen 0 and
_NET_NUMBER_OF_DESKTOPS - 1. This MUST be set and updatetthby
Window Manager. If a Pager wants to switch to another virtiesktop, it MUST
send a_NET_CURRENT_DESKTOP client message to the rootamind

_NET_CURRENT_DESKTOP
nessage_type = _NET_CURRENT_DESKTOP
format = 32
data.l[0] = new_index

Extended Window Manager Hints
3.7. _NET _DESKTOP_NAMES

_NET_DESKTOP_NAMES, UTF8_STRI NJ]

The names of all virtual desktops. This is a list of NULL-témated strings in
UTF-8 encodingUTF8]. This property MAY be changed by a Pager or the
Window Manager at any time.

Note: The number of names could be different from
_NET_NUMBER_OF_DESKTOPS. Ifitis less than
_NET_NUMBER_OF_DESKTOPS, then the desktops with high nerslare
unnamed. Ifitis larger than _NET_NUMBER_OF DESKTOPSnttlee excess
names outside of the _NET_NUMBER_OF_ DESKTOPS are coresidterbe
reserved in case the number of desktops is increased.

Rationale: The name is not a necessary attribute of a videsittop. Thus the
availability or unavailability of names has no impact ortwal desktop
functionality. Since names are set by users and users alg tikpreset names for a
fixed number of desktops, it doesn’t make sense to shrinkaw gris list when the
number of available desktops changes.

3.8. _NET_ACTIVE_WINDOW

_NET_ACTI VE_W NDOW W NDOW 32

The window ID of the currently active window or None if no winwl has the focus.
This is a read-only property set by the Window Manager. Ifi@i@lwants to
activate another window, it MUST send a _NET_ACTIVE_WINDGWént
message to the root window:

_NET_ACTI VE_W NDOW

wi ndow = window to activate
message_type = _NET_ACTI VE_W NDOW
format = 32

data.l[0] = 0 /* may be used later */

3.9. NET_WORKAREA
_NET_WORKAREA, x, y, width, height CARDI NAL[][4]/32

This property MUST be set by the Window Manager upon caltwahe work area
for each desktop. Contains a geometry for each desktopeTgemmetries are
specified relative to the viewport on each desktop and spaoifirea that is

10

Extended Window Manager Hints

completely contained within the viewport. Work area SHOUbh®used by desktop
applications to place desktop icons appropriately.

The Window Manager SHOULD calculate this space by takingtireent page
minus space occupied by dock and panel windows, as inditgtéue
_NET_WM_STRUTproperty set on client windows.

3.10. NET_SUPPORTING_WM_CHECK

_NET_SUPPORTI NG WM CHECK, W NDOW 32

The Window Manager MUST set this property on the root windowé the ID of a
child window created by himself, to indicate that a comg\mdow manager is
active. The child window MUST also have the
_NET_SUPPORTING_WM_CHECK property set to the ID of the @hilindow.
The child window MUST also have the _NET_WM_NAME property ðe
name of the Window Manager.

Rationale: The child window is used to distinguish an actWiadow Manager from
astale _NET_SUPPORTING_WM_CHECK property that happemsiot to
another window. If the _NET_SUPPORTING_WM_CHECK windowtbe client
window is missing or not properly set, clients SHOULD assuhat no conforming
Window Manager is present.

3.11. NET_VIRTUAL_ROOTS

_NET_VI RTUAL_ROOTS, W NDOW]/ 32

To implement virtual desktops, some Window Managers repaileent windows to
a child of the root window. Window Managers using this tecfuiei MUST set this
property to a list of IDs for windows that are acting as vitttet windows. This
property allows background setting programs to work wittal roots and allows
clients to figure out the window manager frame windows ofrthéndows.

3.12. NET_DESKTOP_LAYOUT
_NET_DESKTOP_LAYQUT, orientation, colums, rows, starting corner CAR-
DI NAL[4]/ 32
#defi ne _NET_VW ORI ENTATI ON_HORZ 0
#define _NET_WM ORI ENTATI ON_VERT 1

#define _NET WM TOPLEFT 0

11

Extended Window Manager Hints

#define _NET_WM TOPRIGHT 1
#define _NET_\W BOTTOVRI GHT 2
#define _NET WM BOTTOMLEFT 3

This property is set by a Pager, not by the Window Manager. When setting this
property, the Pager must own a manager selection (as definkd ICCCM 2.8).
The manager selection is called _NET_DESKTOP_LAYOUR wlBieren is the
screen number. The purpose of this property is to allow theddiv Manager to
know the desktop layout displayed by the Pager.

_NET_DESKTOP_LAYOUT describes the layout of virtual degid relative to
each other. More specifically, it describes the layout useith®& owner of the
manager selection. The Window Manager may use this layéainmation or may
choose to ignore it. The property contains four values: gugePorientation, the
number of desktops in the X direction, the number in the Ydiom, and the
starting corner of the layout, i.e. the corner containirgfirst desktop.

Note: In order to inter-operate with Pagers implementingantier draft of this
document, Window Managers should accept a _NET_DESKTORQIAT
property of length 3 and use _NET_WM_TOPLEFT as the stadorger in this
case.

The virtual desktops are arranged in a rectangle witls rows andcol unms
columns. Ifr ows timescol urms does not match the total number of desktops as
specified by NET_NUMBER_OF_DESKTOPS, the highest-nuiedber
workspaces are assumed to be nonexistent. Eiitves or col ums (but not both)
may be specified as 0 in which case its actual value will bevedrirom
_NET_NUMBER_OF_DESKTOPS.

When the orientationis _NET_WM_ORIENTATION_HORZ the dizgis are laid
out in rows, with the first desktop in the specified startingheo. So a layout with
four columns and three rows starting in the _NET_WM_TOPLEBfner looks
like this:

T S
| O 1] 2| 3|
S S
| 4] 5] 6] 7]
T S
| 8] 9]10] 11]
S S

With starting_corner NET_WM_BOTTOMRIGHT, it looks likais:

N N N DI
| 11] 10| 9| 8]
T B
| 7] 6] 5| 4|

12

Extended Window Manager Hints

T S
| 3] 2] 1] O]
e S

When the orientationis _NET_WM_ORIENTATION_VERT the lapavith four
columns and three rows starting inthe _NET_WM_TOPLEFT eotooks like:

o oo+
| O] 3| 6] 9|
R A M
| 1] 4] 7| 10|
o oo+
| 2] 5] 8| 11|
o oo+

With starting_corner _NET_WM_TOPRIGHT, it looks like:

Sy S
| 9 6] 3] O]
S
| 10| 7] 4] 1]
Sy S
| 11| 8] 5] 2|
S

The numbers here are the desktop numbers, as for NET_CURRBBRSKTOP.

3.13. NET_SHOWING_DESKTOP

_NET_SHOW NG _DESKTOP deskt op, CARDI NAL/ 32

Some Window Managers have a "showing the desktop” mode iohwhindows are
hidden, and the desktop background is displayed and focifse@lVindow
Manager supports the NET_SHOWING_DESKTOP hint, it MUSTIitge a value
of 1 when the Window Manager is in "showing the desktop” maahel, a value of
zero if the Window Manager is not in this mode.

If a Pager wants to enter or leave the mode, it MUST send a
_NET_SHOWING_DESKTOP client message to the root windowesting the
change:

_NET_SHOW NG_DESKTOP
nessage_type = _NET_SHOW NG_DESKTOP

13

Extended Window Manager Hints

format = 32
data.l[0] = boolean 0 or 1

The Window Manager may choose to ignore this client message.

4. Other Root Window Messages

4.1. NET_CLOSE_WINDOW

_NET_CLOSE_W NDOW

Pagers wanting to close a window MUST send a _NET_CLOSE_VOMWMIxlient
message request to the root window:

_NET_CLOSE_W NDOW
wi ndow = wi ndow to cl ose
message_type = _NET_CLOSE_W NDOW
format = 32
data.l[0] =0 /* may be used later */

The Window Manager MUST then attempt to close the window i§igelc

Rationale: A Window Manager might be more clever than thelswethod (send
WM_DELETE message if the protocol is selected, XKillClietherwise). It might
introduce a timeout, for example. Instead of duplicating¢bde, the Window
Manager can easily do the job.

4.2. NET_MOVERESIZE_WINDOW

_NET_MOVERESI ZE_W NDOW
wi nhdow = wi ndow to be nopved or resized
nessage_type = _NET_MOVERESI ZE W NDOW

format = 32

data.l[0] = gravity and fl ags
data.l[1] = x

data.l[2] =y

data.l[3] = width

data.l[4] = height

The low byte of data.l[0] contains the gravity to use; it mayptin any value
allowed for the WM_SIZE_HINTS.win_gravity property: Nok/est (1), North (2),
NorthEast (3), West (4), Center (5), East (6), SouthWestS@yth (8), SouthEast

14

Extended Window Manager Hints

(9) and Static (10). A gravity of O indicates that the Windowam&ger should use
the gravity specified in WM_SIZE_HINTS.win_gravity. Thaé$8 to 11 indicate
the presence of x, y, width and height.

Pagers wanting to move or resize a window may send a
_NET_MOVERESIZE_WINDOW client message request to the vaatiow
instead of using a ConfigureRequest.

Window Managers should treata NET_MOVERESIZE_WINDOW sage
exactly like a ConfigureRequest (in particular, adherintheol CCCM rules about
synthetic ConfigureNotify events), except that they shaslel the gravity specified
in the message.

Rationale: Using a _NET_MOVERESIZE_WINDOW message witti8Gravity
allows Pagers to exactly position and resize a window inolyids decorations
without knowing the size of the decorations.

4.3. NET_WM_MOVERESIZE

_NET_WM MOVERESI ZE
wi hdow = wi ndow to be nopved or resized
nessage_type = _NET_ VWM MOVERESI ZE

format = 32

data.l[0] = x_root
data.l[1] = y_root
data.l[2] = direction
data.l[3] = button

This message allows Clients to initiate window movemenesizing. They can
define their own move and size "grips", whilst letting the dom Manager control
the actual operation. This means that all moves/resizebapen in a consistent
manner as defined by the Window Manager.

When sending this message in response to a button press lewiétah SHOULD
indicate the button which was pressed, x_root and y_root Min8icate the
position of the button press with respect to the root windod direction MUST
indicate whether this is a move or resize event, and if it sséze event, which
edges of the window the size grip applies to. When sendirsgntieissage in
response to a key event, the direction MUST indicate whethethis is a move or
resize event and the other fields are unused.

#define _NET_\W MOVERESI| ZE_SI ZE_TOPLEFT 0
#define _NET_\W MOVERESI| ZE_SI ZE_TOP 1
#define _NET_\W MOVERES| ZE_SI ZE_TOPRI GHT 2
#define _NET_\W MOVERESI ZE_SI ZE_RI GHT 3
#define _NET_\WM MOVERESI ZE_SI ZE_BOTTOVRI GHT 4

15

Extended Window Manager Hints

#define _NET_WM MOVERESI ZE_SI ZE_BOTTOM 5

#define _NET_WM MOVERESI ZE_SI ZE_ BOTTOMLEFT 6

#defi ne _NET_\WM MOVERES| ZE_SI ZE_LEFT 7

#define _NET_ VWM MOVERESI ZE MOVE 8 /* novenent only */
#define NET_ WM MOVERESI ZE SI ZE KEYBOARD 9 /* size via key-
board */

#defi ne _NET_\WW MOVERES| ZE_MOVE_KEYBOARD 10 /* nove via key-
board */

The Client MUST release all grabs prior to sending such ngessa

The Window Manager can use the button field to determine taatevon which it
terminates the operation initiated by the _NET_WM_MOVERHESmMessage.
Since there is a race condition between a client sending the
_NET_WM_MOVERESIZE message and the user releasing thergut¢indow
Managers are advised to offer some other means to termhmatgeration, e.g. by
pressing the ESC key.

5. Application Window Properties

5.1. NET_WM_NAME

_NET_WM NAMVE, UTF8_STRI NG

The Client SHOULD set this to the title of the window in UTF8oeding. If set,
the Window Manager should use this in preference to WM_NAME.

5.2. NET_WM_VISIBLE_NAME

_NET_WM VI S| BLE_NAMVE, UTF8_STRI NG

If the Window Manager displays a window name other than _ NEW_NAME
the Window Manager MUST set this to the title displayed in LB Encoding.

Rationale: This property is for Window Managers that dig@aitle different from
the NET_WM_NAME or WM_NAME of the window (i.e. xterm <1> ettm <2>,
... 1Isshown, but NET_WM_NAME / WM_NAME is still xterm for e window)
thereby allowing Pagers to display the same title as the Windanager.

16

Extended Window Manager Hints
5.3. NET_WM_ICON_NAME
_NET_WM | CON_NAME, UTF8_STRI NG

The Client SHOULD set this to the title of the icon for this wow in UTF-8
encoding. If set, the Window Manager should use this in pegiee to
WM_ICON_NAME.

5.4. NET_WM_VISIBLE_ICON_NAME

_NET_WM VI S| BLE_| CON_NAME, UTF8_STRI NG

If the Window Manager displays an icon name other than
_NET_WM_ICON_NAME the Window Manager MUST set this to thiteti
displayed in UTF-8 encoding.

5.5. NET_WM_DESKTOP
_NET_WWM DESKTOP deskt op, CARDI NAL/ 32

Cardinal to determine the desktop the window is in (or wamtsd) starting with O
for the first desktop. A Client MAY choose not to set this pndpan which case
the Window Manager SHOULD place it as it wishes. OxFFFFFFRiehcates that
the window SHOULD appear on all desktops.

The Window Manager should honor NET_WM_DESKTOP whenever a
withdrawn window requests to be mapped.

The Window Manager should remove the property whenever dawris
withdrawn but it should leave the property in place when ghistting down, e.g. in
response to losing ownership of the WM_Sn manager selection

Rationale: Removing the property upon window withdrawdpbdegacy
applications which want to reuse withdrawn windows. Notogmg the property
upon shutdown allows the next Window Manager to restore aurgo their
previous desktops.

A Client can request a change of desktop for a non-withdramdew by sending a
_NET_WM_DESKTOP client message to the root window:

NET\WM _DESKTOP
wi ndow = the respective client w ndow
nessage _type = _NET_ WM DESKTOP
format = 32
data.l[0] = new desktop

17

Extended Window Manager Hints
The Window Manager MUST keep this property updated on altaws.

5.6. NET WM_WINDOW_ TYPE
_NET_WM_W NDOW TYPE, ATOM]/ 32

This SHOULD be set by the Client before mapping to a list of@gandicating the
functional type of the window. This property SHOULD be usgdie window
manager in determining the decoration, stacking positt@hather behavior of the
window. The Client SHOULD specify window types in order oéfarence (the first
being most preferable) but MUST include at least one of tisechaindow type
atoms from the list below. This is to allow for extension o iist of types whilst
providing default behavior for Window Managers that do remtagnize the
extensions.

Rationale: This hint is intended to replace the MOTIF hi@iee of the objections
to the MOTIF hints is that they are a purely visual descriptvd the window
decoration. By describing the function of the window, thendééw Manager can
apply consistent decoration and behavior to windows of émeestype. Possible
examples of behavior include keeping dock/panels on toflawimg pinnable
menus / toolbars to only be hidden when another window hassf@dextStep
style).

NET\WWM W NDOW TYPE_DESKTOP, ATOM
_NET_WWM W NDOW TYPE_DOCK, ATOM
_NET_WWM W NDOW TYPE_TOOLBAR, ATOM
_NET_WWM W NDOW TYPE_MENU, ATOM
NET\WWM W NDOW TYPE_UTI LI TY, ATOM
_NET_WM W NDOW TYPE_SPLASH, ATOM
_NET_WM W NDOW TYPE_DI ALOG, ATOM
_NET_WWM_ W NDOW TYPE_NORMAL, ATOM

_NET_WM_WINDOW_TYPE_DESKTOP indicates a desktop feattitgs can
include a single window containing desktop icons with thasaimensions as the
screen, allowing the desktop environment to have full cirtf the desktop,
without the need for proxying root window clicks.

_NET_WM_WINDOW_TYPE_DOCK indicates a dock or panel featurypically
a Window Manager would keep such windows on top of all othedeivs.

_NET_WM_WINDOW_TYPE_TOOLBAR and
_NET_WM_WINDOW_TYPE_MENU indicate toolbar and pinnablemnu
windows, respectively (i.e. toolbars and menus "torn affhi the main
application). Windows of this type may set the WM_TRANSIENFOR hint
indicating the main application window.

18

Extended Window Manager Hints

_NET_WM_WINDOW_TYPE_UTILITY indicates a small persistartility
window, such as a palette or toolbox. It is distinct from tyfl@OLBAR because it
does not correspond to a toolbar torn off from the main appba. It's distinct
from type DIALOG because it isn't a transient dialog, therus#l probably keep it
open while they’re working. Windows of this type may set the
WM_TRANSIENT_FOR hint indicating the main application wliow.

_NET_WM_WINDOW_TYPE_SPLASH indicates that the window isash
screen displayed as an application is starting up.

_NET_WM_WINDOW_TYPE_DIALOG indicates that this is a diglvindow. If
_NET_WM_WINDOW_TYPE is not set, then windows with
WM_TRANSIENT_FOR set MUST be taken as this type.

_NET_WM_WINDOW_TYPE_NORMAL indicates that this is a norin@p-level
window. Windows with neither NET_WM_WINDOW_TYPE nor
WM_TRANSIENT_FOR set MUST be taken as this type.

5.7. NET_WM_STATE
_NET_WWM STATE, ATOM]

A list of hints describing the window state. Atoms preserttialist MUST be
considered set, atoms not present in the list MUST be coresideot set. The
Window Manager SHOULD honor NET_WM_STATE whenever a witivdn
window requests to be mapped. A Client wishing to changettte sf a window
MUST send a _NET_WM_STATE client message to the root windsee (below).
The Window Manager MUST keep this property updated to reflexzturrent state
of the window.

The Window Manager should remove the property whenever dawns
withdrawn, but it should leave the property in place whes ghutting down, e.g. in
response to losing ownership of the WM_Sn manager selection

Rationale: Removing the property upon window withdrawdphéegacy
applications which want to reuse withdrawn windows. Notogmg the property
upon shutdown allows the next Window Manager to restore oo their
previous state.

Possible atoms are:

_NET_WM STATE_MODAL, ATOM

_NET_WM STATE_STI CKY, ATOM
_NET_WM STATE_MAXI M ZED VERT, ATOM
_NET_WWM STATE_MAXI M ZED _HORZ, ATOM
_NET_WM STATE_SHADED, ATOM
_NET_WM STATE_SKI P_TASKBAR, ATOM

19

Extended Window Manager Hints

_NET_WM _STATE_SKI P_PAGER, ATOM
_NET_WM_STATE_H DDEN, ATOM
_NET_WM STATE_FULLSCREEN, ATOM
_NET_WM _STATE_ABOVE, ATOM
_NET_WM _STATE_BELOW ATOM

An implementation MAY add new atoms to this list. Implemeiuas without
extensions MUST ignore any unknown atoms, effectively remgpthem from the
list. These extension atoms MUST NOT start with the prefix TNE

_NET_WM_STATE_MODAL indicates that this is a modal dialogib If the
WM_TRANSIENT_FOR hint is set to another toplevel windowe tialog is modal
for that window; if WM_TRANSIENT_FOR is not set or set to theot window the
dialog is modal for its window group.

_NET_WM_STATE_STICKY indicates that the Window Manager@HLD keep
the window’s position fixed on the screen, even when the aidesktop scrolls.

_NET_WM_STATE_MAXIMIZED {VERT,HORZ} indicates that thevindow is
{vertically,horizontally} maximized.

_NET_WM_STATE_SHADED indicates that the window is shaded.

_NET_WM_STATE_SKIP_TASKBAR indicates that the window sitebnot be
included on a taskbar. This hint should be requested by tpkcagion, i.e. it
indicates that the window by nature is never in the taskbppligations should not
set this hintif NET_WM_WINDOW_TYPE already conveys theeknature of
the window.

_NET_WM_STATE_SKIP_PAGER indicates that the window skiaubt be
included on a Pager. This hint should be requested by thécagiph, i.e. it indicates
that the window by nature is never in the Pager. Applicatsinsuld not set this hint
if _NET_WM_WINDOW_TYPE already conveys the exact naturé¢haf window.

_NET_WM_STATE_HIDDEN should be set by the Window Managentticate
that a window would not be visible on the screen if its desktiggvport were active
and its coordinates were within the screen bounds. The azad@xample is that
minimized windows should be inthe _NET_WM_STATE_HIDDEMt&t Pagers
and similar applications should use _NET_WM_STATE_HIDDiaktead of

WM _STATE to decide whether to display a window in miniatuepresentations of
the windows on a desktop.

Implementation note: if an Application asks to toggle
_NET_WM_STATE_HIDDEN the Window Manager should probahlgtjignore
the request, since _ NET_WM_STATE_HIDDEN is a function afnsoother aspect
of the window such as minimization, rather than an indepetstate.

_NET_WM_STATE_FULLSCREEN indicates that the window stlabiiil the
entire screen and have no window decorations. For examplesantation program

20

Extended Window Manager Hints
would use this hint.

_NET_WM_STATE_ABOVE indicates that the window should betop of most
windows (seeSection 7.10or details).

_NET_WM_STATE_BELOW indicates that the window should b&hemost
windows (se&Section 7.10or details).

_NET_WM_STATE_ABOVE and NET_WM_STATE_BELOW are mainlyeant
for user preferences and should not be used by applicatignfoe drawing
attention to their dialogs (the Urgency hint should be usdtiat case, seBection
7.4).)

To change the state of a mapped window, a Client MUST send a
_NET_WM_STATE client message to the root window (windowhis tespective
window, type _NET_WM_STATE, format 32, [[0]=<the actiors ksted below>,
[[1]=<First property to alter>, I[2]=<Second property tibeg>). This message
allows two properties to be changed simultaneously, spadifito allow both
horizontal and vertical maximization to be altered togetti2] MUST be set to
zero if only one property is to be changed. I[0], the actiotJ$T be one of:

_NET_WM STATE_REMOVE 0 /* renove/ unset property */
_NET_WM STATE_ADD 1 /* add/ set property */
_NET_WM STATE_TOGGLE 2 /* toggle property */

See also the implementation notesusgencyandfixed size windows

5.8. NET_WM_ALLOWED_ ACTIONS

_NET_WWM ALLOWED ACTI ONS, ATOM]

A list of atoms indicating user operations that the Windownlsiger supports for
this window. Atoms present in the list indicate allowed acfi, atoms not present in
the list indicate actions that are not supported for thisdemm The Window
Manager MUST keep this property updated to reflect the astrdmch are

currently "active” or "sensitive" for a window. Taskbarggers, and other tools use
_NET_WM_ALLOWED_ACTIONS to decide which actions shouldrinade
available to the user.

Possible atoms are:

_NET_WWM ACTI ON_MOVE, ATOM

_NET_WM ACTI ON_RESI ZE, ATOM
_NET_WM ACTION_M NI M ZE, ATOM
_NET_WWM ACTI ON_SHADE, ATOM
_NET_WWM ACTI ON_STI CK, ATOM
_NET_WWM ACTI ON_MAXI M ZE_HORZ, ATOM

21

Extended Window Manager Hints

_NET_WM_ACTI ON_MAXI M ZE_VERT, ATOM
_NET_WM_ACTI ON_FULLSCREEN, ATOM
_NET_WM ACTI ON_CHANGE_DESKTOP, ATOM
_NET_WM_ACTI ON_CLOSE, ATOM

An implementation MAY add new atoms to this list. Implemeimas without
extensions MUST ignore any unknown atoms, effectively remgpthem from the
list. These extension atoms MUST NOT start with the prefix TNE

Note that the actions listed here are those thavérelow Manager will honor for
this window. The operations must still be requested thrabglormal mechanisms
outlined in this specification. For example, NET_WM_ACNQOCLOSE does not
mean that clients can send a WM_DELETE_WINDOW message sontimdow; it
means that clients can use a_NET_CLOSE_WINDOW messagé& thasVindow
Manager to do so.

Window Managers SHOULD ignore the value of
_NET_WM_ALLOWED_ACTIONS when they initially manage a wiod. This
value may be left over from a previous Window Manager witledént policies.

_NET_WM_ACTION_MOVE indicates that the window may be mowdund the
screen.

_NET_WM_ACTION_RESIZE indicates that the window may bezed.
(Implementation note: Window Managers can identify a nesizable window
because its minimum and maximum size in WM_NORMAL_HINTS| wé the
same.)

_NET_WM_ACTION_MINIMIZE indicates that the window may beanified.
_NET_WM_ACTION_SHADE indicates that the window may be sthd

_NET_WM_ACTION_STICK indicates that the window may hawesticky state
toggled (as for NET_WM_STATE_STICKY). Note that this staias to do with
viewports, not desktops.

_NET_WM_ACTION_MAXIMIZE_HORZ indicates that the windowawy be
maximized horizontally.

_NET_WM_ACTION_MAXIMIZE_VERT indicates that the window ay be
maximized vertically.

_NET_WM_ACTION_FULLSCREEN indicates that the window magltrought
to fullscreen state.

_NET_WM_ACTION_CHANGE_DESKTOP indicates that the windovay be
moved between desktops.

_NET_WM_ACTION_CLOSE indicates that the window may be elbgi.e. a
WM_DELETE_WINDOW message may be sent).

22

Extended Window Manager Hints
5.9. NET_WM_STRUT

_NET_WM STRUT, left, right, top, bottom CARDI NAL[4]/32

This property MUST be set by the Client if the window is to m¥gespace at the
edge of the screen. The property contains 4 cardinals siegithe width of the
reserved area at each border of the screen. The order of ttierbas left, right, top,
bottom. The client MAY change this property at any time, #fiere the Window
Manager MUST watch out for property notify events.

The purpose of struts is to reserve space at the borders désigop. This is very
useful for a docking area, a taskbar or a panel, for instaroe Window Manager
should know about this reserved space in order to be ableesepre the space.
Also maximized windows should not cover that reserved space

Rationale: A simple "do not cover" hint is not enough for deglwith e.g.
auto-hide panels.

Notes: An auto-hide panel SHOULD set the strut to be its mimmhidden size. A
"corner" panel that does not extend for the full length ofr@en border SHOULD
only set one strut.

5.10. NET_WM_ICON_GEOMETRY
_NET_WM | CON_GEOVETRY, X, y, width, height, CARDI NAL[4]/32
This optional property MAY be set by stand alone tools likaskbar or an

iconbox. It specifies the geometry of a possible icon in chsevindow is iconified.

Rationale: This makes it possible for a Window Manager tpldiga nice
animation like morphing the window into its icon.

5.11. NET_WM_ICON

NET\W | CON CARDI NAL[][2+n] /32

This is an array of possible icons for the client. This speatfon does not stipulate
what size these icons should be, but individual desktoprenments or toolkits
may do so. The Window Manager MAY scale any of these icons t@pgmopriate
size.

This is an array of 32bit packed CARDINAL ARGB with high byteibg A, low
byte being B. The first two cardinals are width, height. Datenirows, left to right
and top to bottom.

23

Extended Window Manager Hints
5.12. NET_WM_PID

_NET_WM_PI D CARDI NAL/ 32

If set, this property MUST contain the process ID of the dli@wning this window.
This MAY be used by the Window Manager to kill windows which miat respond
tothe NET_WM_PING protocol.

If NET_WM_PID is set, the ICCCM-specified property
WM_CLIENT_MACHINE MUST also be set. While the ICCCM only negsts that
WM_CLIENT_MACHINE is set “ to a string that forms the name betmachine
running the client as seen from the machine running the seceaformance to this
specification requires that WM_CLIENT_MACHINE be set to foy-qualified
domain name of the client’s host.

See also the implementation noteskiliing hung processes

5.13. NET_WM_HANDLED ICONS
_NET_WM HANDLED | CONS

This property can be set by a Pager on one of its own toplevedows to indicate
that the Window Manager need not provide icons for iconifiédews, for
example if it is a taskbar and provides buttons for iconifieddaws.

6. Window Manager Protocols

6.1. NET_WM_PING

This protocol allows the Window Manager to determine if tHed is still
processing X events. This can be used by the Window Managkatésmine if a
window which fails to close after being sent WM_DELETE_WIRRV has
stopped responding or has stalled for some other reasdmasuegaiting for user
confirmation. A Client SHOULD indicate that it is willing togpticipate in this
protocol by listing NET_WM_PING in the WM_PROTOCOLS profyeof the
client window.

A Window Manager can use this protocol at any time by sendicligeat message
as follows:

type = Cient Message
wi ndow = the respective client w ndow

24

Extended Window Manager Hints

nessage_type = WM PROTOCOLS
format = 32

data.l[0]
data.l[1]

_NET_WM _PI NG
ti mestanp

A participating Client receiving this message MUST senaithoto the root
window immediately, by setting window = root, and calling &flEvent. The
Client MUST NOT alter the timestamp, as this can be used by\timelow
Manager to uniquely identify the ping.

The Window Manager MAY kill the Client (using _NET_WM_PID)it fails to
respond to this protocol within a reasonable time.

See also the implementation noteskiliing hung processes

7. Implementation notes

7.1. Desktop/workspace model

This spec assumes a desktop model that consists of one oicoopetely
independent desktops which may or may not be larger tharctkers area. When a
desktop is larger than the screen it is left to the Window Mgmaf it will

implement scrolling or paging.

7.2. File Manager desktop

This spec suggests implementing the file manager desktopabppimg a
desktop-sized window (no shape) to all desktops, with
_NET_WM_WINDOW_TYPE_DESKTOP. This makes the desktop &ahle and
greatly simplifies implementation of the file manager. Iti®daster than managing
lots of small shaped windows. The file manager draws the lvaakgl on this
window. There should be a root property with a window handteue in
applications that want to draw the background (xearth).

7.3. Implementing enhanced support for application
transient windows

If the WM_TRANSIENT_FOR property is set to None or Root wimgthe
window should be treated as a transient for all other windiovilse same group. It

25

Extended Window Manager Hints

has been noted that this is a slight ICCCM violation, but &slikhavior is pretty
standard for many toolkits and window managers, and is edhgunlikely to
break anything, it seems reasonable to document it as sthnda

7.4. Urgency

Windows expecting immediate user action should indicateusing the urgency bit
in the WM_HINTS.flags property, as defined in the ICCCM.

7.5. Fixed size windows

Windows can indicate that they are non-resizable by sethimpeight = maxheight
and minwidth = maxwidth in the ICCCM WM_NORMAL_HINTS propgr The
Window Manager MAY decorate such windows differently.

7.6. Pagers and Taskbars

This specification attempts to make reasonable provisimngihdow manager
independent pagers and taskbars. Window Managers thatedgiesire additional
functionality beyond what can be achieved using the meshasset out in this
specification may choose to implement their own pagers, wtoenmunicate with
the Window Manager using further, window manager specifitshior some other
means.

Pagers should decide whether to show a miniature versionvai@w using the
following guidelines:

. If either NET_WM_STATE_SKIP_PAGER or _NET_WM_STATE_HIEN
are set on a window, then the pager should not show that window

- The pager may choose not to display windows with certain séimgypes; this
spec has no recommendations, but common practice is to digmthying
_NET_WM_WINDOW_TYPE_DOCK for example.

- Ifthe _NET_WM_STATE_SKIP_PAGER and _NET_WM_STATE_HIDNE
hints are not present, and the Window Manager claims to stippo
_NET_WM_STATE_HIDDEN, then the window should be shown’ it either
NormalState or IconicState.

- For Window Managers that do not support NET _WM_STATE_HHEN) the
pager should not show windows in IconicState. These Wind@m&gers are
probably using an older version of this specification.

26

7.7. Window Geometry

Extended Window Manager Hints

Window manager implementors should refer to the ICCCM fdmiteve
specifications of how to handle MapRequest and Configure€agvents.
However, since these aspects of the ICCCM are easily mistieiadlocument

offers the following clarifications:

- Window Managers MUST honor the win_gravity field of
WM_NORMAL_HINTS for both MapRequesind ConfigureRequest events
(ICCCM Version 2.0, 84.1.2.3 and §4.1.5)

- When generating synthetic ConfigureNotify events, thetmsgiven MUST be
the top-left corner of the client window in relation to thegon of the root
window (i.e., ignoring win_gravity) (ICCCM Version 2.0, 843)

- Window Managers maintain a reference point for each cligntdow and place
the window relative to this reference point depending ontthmelow’s

win_gravity as follows:

v

DW

win_gravity: placed at the reference point

StaticGravity the left top corner of the client window

NorthWestGravity the left top corner of the frame windo

NorthGravity the center of the frame window'’s top
side

NorthEastGravity the right top corner of the frame wind

EastGravity the center of the frame window’s right
side

SouthEastGravity the right bottom corner of the frame
window

SouthGravity the center of the frame window’s bottom
side

SouthWestGravity the left bottom corner of the frame
window

WestGravity the center of the frame window’s left
side

CenterGravity the center of the frame window

- Applications are free to change their win_gravity settihgray time.

27

Extended Window Manager Hints

If an Application changes its win_gravity then the Windowmhager should
adjust the reference point, so that the client window wili move as the result.
For example if the Application’s win_gravity was NorthWesavity and
reference point was at the top-left corner of the frame wimdben after change
of win_gravity to SouthEastGravity the reference pointidtdde adjusted to
point to the lower-right corner of the frame.

Note: Changing the win_gravity for a single configure request and back
afterwards is unlikely to work as intended, due to a race condition. The
window manager sees a property notify for WM_NORMAL_HINTS, followed
by the configure request, followed by another property notify for
WM_NORMAL_HINTS. By the time the window manager gets around to
request the changed WM_NORMAL_HINTS in response to the first
property notify, the server may have already processed the second property
change.

If the window manager supports it, applications should use
_NET_MOVERESIZE_WINDOW with a specified gravity to avoid this
problem.

If the Application requests a new position (X, y) (and polysatiso a new size),
the Window Manager calculates a new reference point (reéfxy), based on
the client window’s (possibly new) size (width, height)rer width (bw) and
win_gravity as explained in the table below.

The Window Manager will use the new reference point untilribgt request for
a new position.

win_gravity: ref x: ref y:
StaticGravity X y
NorthWestGravity X-bw y-bw
NorthGravity X+(width/2) -bw
NorthEastGravity x+width+bw y-bw
EastGravity x+width+bw +(height/2)
SouthEastGravity X+width+bw y+height+bw
SouthGravity X+(width/2) y+height+bw
SouthWestGravity X-bw +height+bw
WestGravity X-bw y+(height/2)
CenterGravity X+(width/2) +(height/2)

28

Extended Window Manager Hints

- If an Application requests just a new size, its referencatuoes not move. So
for example if client window has win_gravity SouthEastGtaand is resized,
the bottom right corner of its frame will not move but instead top left corner
will be adjusted by the difference in size.

- When calculating the reference point at the time of initlaement, the Window
Manager should take the initial window’s size into consadien, as if it was the
frame for this window.

7.8. Window-in-Window MDI

The authors of this specification acknowledge that there istandard method to
allow the Window Manager to manage windows that are part of a
Window-in-Window MDI application. Application authorseaadvised to use some
other form of MDI, or to propose a mechanism to be includedfutare revision of
this specification.

7.9. Killing Hung Processes

If processes fail to respond to the _ NET_WM_PING protocoETNWM_PID
may be used in combination with the ICCCM specified WM_CLIENMIACHINE
to attempt to kill a process.

WM_CLIENT_MACHINE is usually set by calling XSetWMPropas(). The
hostname for the current host can be be retrieved using sfetlime(), when
gethostname() is not available on the platform implementaay use the value of
the nodename field of struct utsname as returned by unamat@.d¥so that the
value of WM_CLIENT_MACHINE is not guaranteed to be a fullylfuqualified
domain name of the host. An example of how to retrieve thertaose:

int net_get _hostnane (char *buf, size t maxlen)
{

#i f def HAVE CGETHOSTNANME

if (buf == NULL) return O;

get host name (buf, maxlen);
buf [maxlen - 1] = '\0";

return strlen(buf);
#el se
struct utsnane nane;

size t len;

if (buf == NULL) return O;

29

unare (&nane);
len =

if (len >= nmaxlen) |en
strncpy (buf, nane.nodenane,
buf[len] = "'\0";

return |en;

#endi f
}

7.10. Stacking order

strlen (name. nodenane) ;

= maxl en - 1;

l en);

Extended Window Manager Hints

To obtain good interoperability between different Deskiowironments, the
following layered stacking order is recommended, from toedm:

- windows of type NET_WM_TYPE_DESKTOP
- windows having state NET_WM_STATE_BELOW

- windows not belonging in any other layer

- windows of type NET_WM_TYPE_DOCK (unless they have state
_NET_WM_TYPE_BELOW) and windows having state

_NET_WM_STATE_ABOVE

- focused windows having state NET_WM_STATE_FULLSCREEN

Windows that are transient for another window should be képte this window.

The window manager may choose to put some windows in diffestaicking
positions, for example to allow the user to bring currentictive window to the
top and return it back when the window looses focus.

8. References

[UTF8]

F. Yergeau,"UTF-8, a transformation format of ISO 106462279

30

Extended Window Manager Hints

[ICCCM]
David Rosenthal and Stuart W. Marks, "Inter-Client Comngcation
Conventions Manual (Version 2.0)", X Consortium Standxr®¥ersion 11,
Release 6.3

9. Copyright

Copyright (C) 2000, 2001, 2002 See Contributors List

Permission is hereby granted, free of charge, to any pefs@aining a copy of this
software and associated documentation files (the "Soft\vacedeal in the
Software without restriction, including without limita the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/drcegies of the Software,
and to permit persons to whom the Software is furnished tadeiject to the
following conditions:

The above copyright notice and this permission notice slwihcluded in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10. Contributors

Sasha Vasko
Bradley T. Hughes
Dominik Vogt
Havoc Pennington
Jeff Raven

Jim Gettys

John Harper

Julian Adams

31

Extended Window Manager Hints
Matthias Ettrich
Micheal Rogers
Nathan Clemons
Tim Janik
Tomi Ollila
Sam Lantinga
The Rasterman
Paul Warren
Owen Taylor
Marko Macek
Greg Badros
Matthias Clasen
David Rosenthal

Lubos Lunak

11. Change history

11.1. Changes since 1.2

Rewrote the implementation notes on "Window Movementtftleet it to
"Window Geometry".

- Rewrote the implementation notes on "Urgency", makingaactkhat the hint is
not just about dialogs.

- Fixed the specification of the X and Y members of NET_DESKTOD®/OUT
and renamed them to columns and row for clarity.

« Change the description of NET_WM_STATE_MODAL to no longequire
apps to break the ICCCM for group-modal windows, but stipsort the
WM_TRANSIENT_FOR-=root dialect.

32

Extended Window Manager Hints
11.2. Changes since 1.1

- Changed WM_CLIENT_NAME(STRING) from suggested to reqdifer
_NET_WM_PID.

- Specification and sample code for the content of
WM_CLIENT_NAME(STRING).

. Added NET_WM_WINDOW_TYPE_SPLASH,
_NET_WM_WINDOW_TYPE_UTILITY.

. Added NET_WM_STATE_FULLSCREEN.
. Added NET_WM_ALLOWED_ACTIONS.

- Added NET_WM_STATE_HIDDEN and clarified purpose of
_NET_WM_STATE_SKIP_PAGER and NET_WM_STATE_SKIP_TASKRB.
Changed section on virtual desktop implementation to ssigg&CM
compliance regarding IconicState, using _NET_WM_STATIDBEN to avoid
confusion. Added implementation note for pagers on whensplaly a window.

« Added button field and new directions for keyboard-initibéetions to the
_NET_WM_MOVERESIZE message.

- Added advice on removing NET_WM_STATE and NET_WM_DESKITO
when a window is withdrawn.

- Added NET DESKTOP_LAYOUT to allow a Pager to specify indesktop
geometry.

. Added NET_SHOWING_DESKTOP.

- Added NET_WM_STATE_ABOVE and NET_WM_STATE_BELOW and a
recommended layered stacking order.

« Added NET_MOVERESIZE_WINDOW.
- Improve markup of citations.

- Explain _NET_DESKTOP_GEOMETRY and _NET_WM_HANDLED_ICGN
in more detail and improve the explanation of WM_CLIENT _MHAIBIE in
Section 7.9

- Add Lubos Lunak to the list of contributors.

11.3. Changes since 1.0

- Fix doctype, add author info, update data.

33

Extended Window Manager Hints

Change specification description wording to be more inekjsand to reflect the
joint nature of the specification.

- Fix miscellaneous typographical, grammar and spellingrerr

« Clarified _NET_SUPPORTED to include ALL atoms, not just thegerty
names.

- Various corrections to use of MUST and SHOULD.
« Fix problem in _NET_WM_ICON where 'bytes’ should have beeartinals’
+ Replaced ISO-8559-1 characters with entities.

11.4. Changes since 1.0pre5

- Change history moved to end.

- UTF-8 Reference updated.

- Window Gravity information updated.
- Copyright Added.

« Minor typo corrections.

11.5. Changes since 1.0pre4

- Clarified the interpretation of client-provided geomedram large desktops.

- Added more explanation for [NET_DESKTOP_NAMES.

- Added _NET_WM_ICON_NAME and _NET_WM_VISIBLE_ICON_NAME.
- Tried to improve the wording of _NET_WM_STRUT explanation.

- Changed _NET_WORKAREA to an array of viewport-relative gedries.

- Updated list of “dependent” properties for NET_NUMBER_@ESKTOPS to
include _NET_WORKAREA and _NET_DESKTOP_VIEWPORT.

- Tidied formatting of all client messages.

11.6. Changes since 1.0pre3

- Added information about common non-ICCCM features.

34

Extended Window Manager Hints
- Added explanation of sending messages to the root window.
- Removed XA _prefix from type names.

- Clarified that “mapping order” refers to inital mapping amesify the directions
of both orders.

- Clarified that desktops have a common size specified by
_NET_DESKTOP_GEOMETRY.

- Rewrote explanation of NET_DESKTOP_VIEWPORT.

- Tidied formatting of NET_CURRENT_DESKTOP.

- Replaced “window handle” by “window ID”.

- Tidied formatting of NET_WORKAREA.

- Rewrote the motivation for _NET_VIRTUAL_ ROOTS.

- Added advice on Pointer grabsto NET_WM_MOVERESIZE.
- Fixed typosin NET_WM_STATE.

. Added NET_WM_STATE_SKIP_PAGER.

« Tidied formatting of NET_WM_STRUT.

- Tidied formatting of NET_WM_ICON_GEOMETRY.

11.7. Changes since 1.0pre2

_NET_SET_NUMBER_OF_DESKTOPS ->
_NET_NUMBER_OF_DESKTOPS for consistency.

_NET_WM_VISIBLE_NAME_STRING -> NET_WM_VISIBLE_NAME fo
consistency.

- NET_WM_STATE: added explanation of permitted extensiédwkled
explanation of being set / not set.

- Spellchecked, corrected various typos.

- UTF8 -> UTF-8 for consistency.

- added references to the ICCCM an UTF-8 (incomplete).
- added data and event formats where missing.

. clarified NET_SUPPORTING_WM_CHECK.

- fixed formatting of NET_CLOSE_WINDOW message.

35

Extended Window Manager Hints
11.8. Changes since 1.0prel

- Removed implementation note concerning Gnome’s (potefitemanager
behavior.

- The Window Movement section of the implementation notestiegs revised.

11.9. Changes since 1.9f

 Revised revision number for first accepted release 1.9XX0pr&XxXX.
« Prerequisites for adoption of this specification added.
- Tidied formatting of NET_CURRENT_DESKTOP for consistgnc

- Tidied formatting of NET_ACTIVE_WINDOW for consistendgemoved
doubled text.

- Tidied formatting of NET_WM_DESKTOP for consistency.

« Killing Hung Processes implementation note added. _NET_WND and
_NET_WM_PING now link to this.

- Clarified x_root and y_root meaning for NET_WM_MOVERESIZE
- Added contributor list.

11.10. Changes since 1.9e

. Added NET_WM_VISIBLE_NAME_STRING

« Removed ambiguity from _NET_NUMBER_OF_DESKTOPS and
_NET_DESKTOP_NAMES in combination.

- Set _NET_WM_MOVERESIZE format to 32 for consistency.
« Removed NET_PROPERTIES.
- Removed comment from NET_WM_MOVERESIZE.

11.11. Changes since 1.9d

. Added NET_VIRTUAL_ROOTS

36

Extended Window Manager Hints
- Added note about ICCCM compliant window moves.
Added NET_WM_HANDLED_ICONS
Added NET_SUPPORTING_WM_CHECK

Removed degrees of activation

11.12. Changes since 1.9c

- Removed packaging of hints into 2 X properties. Jim Gettyatsamut that the
performance gains of fewer round trips can be better actliesag Xlib
routines.

 Clarified that NET_DESKTOP_VIEWPORT is in pixels

- NET_DESKTOP_VIEWPORT is now an array, one for each desktoallow
for different active viewports on different desktops

« NET_WM_STRUT now only applies on desktops on which thentlig visible

+ Introduced RFC 2119 language, and attempted to clarifydtes of the Window
Manager, Pagers and Applications

. Added NET_WM_NAME

. _NET_DESKTOP_NAMES now in UTF8

- Desktops now start from O

. Added NET_WM_PID

« Added NET_WM_PING protocol

. Added NET_WM_STATE_SKIP_TASKBAR

11.13. Changes since 1.9b

- Removed NET _NUMBER_OF_DESKTOPS client message, as rtapse
unnecessarily with _NET_{INSERT/DELETE} DESKTOP.

« Replaced NET_WM_LAYER and NET_WM_HINTS with
_NET_WM_WINDOW_TYPE functional hint.

- Changed NET_WM_STATE to a list of atoms, for extensibility
- Expanded description of NET_WORKAREA and _NET_WM_STRUT.
- Removed NET _WM_SIZEMOVE_NOTIFY protocol.

37

Extended Window Manager Hints
- Added degrees of activationto _NET_ACTIVE_WINDOW clienéssage
- Added NET_WM_ICON

« My comments are in [[]]. Comments from Marko’s draft are iM|1:]]

38

