Extended Window Manager Hints
X Desktop Group(http://www.freedesktop.org)

Version 1.2
October 7, 2002

Table of Contents

L TNEEOTUCTION ...ttt r et b bbbt b et b et bbbt b bbb e bt b nrns 1
2. NON-TCCCM FEALUIES ...ttt ettt sttt b ettt se b e e b e st et e s e sbe et ebesbebeseebenea 2
3. Root Window Properties (and Related MESSAgES)coureirrieririiirieiesieeseeeseee st seese e 6
4. Other ROOt WINAOW M ESSAJES.......ceeuieeiiieieriste sttt sttt sttt sttt sttt ebesbebe e eseseebeseetesesbesesbesennas 11
5. ApPlication WiINAOW PrOPEItIEScviiiiieiresieie sttt st st ettt st 13
6. WiIiNdOW M anager ProtOCOIS ..ottt sttt 20
7. I MPIEMENTALION NOLES......c.iieieiicie ettt sttt e et sttt 20
B REFEIENCES. ...ttt bbb bbbt ettt bt n e e ne e 25
LS 2 @700/ o o] OSSPSR 25
L0, CONEIIDULOT S, bbbt bt et s et e 26
I O T= g To = T o YOS 26

1. Introduction

1.1. Version

This is Version 1.2 of the Extended Window Manager Hints (EW)Mpec, updated October 7, 2002.

1.2. What is this spec?

This spec defines interactions between window managericaipns, and the utilities that form part of
a desktop environment. It builds on the Inter-Client Comination Conventions ManualCCCM],
which defines window manager interactions at a lower leveé ICCCM does not provide ways to
implement many features that modern desktop users expgeeiGNOME and KDE desktop projects
originally developed their own extensions to the ICCCM tpart these features; this spec replaces
those custom extensions with a standardized set of ICCCMiawsithat any desktop environment can
adopt.

Extended Window Manager Hints

1.3. Language used in this specification

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHAL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in thisdocument are to be
interpreted as described in RFC 2119.

The key words "Window Manager" refer to a window manager Wiscadopting this specification.
"Pager" refers to desktop utility applications, includpaigers and taskbars. "Application" refers to other
clients. "Clients" refers to Pagers and Applications ieXatlients, except for the Window Manager.

1.4. Prerequisites for adoption of this specification

Window Managers and Clients which aim to fulfill this speation MUST adhere to the ICCCM on
which this specification builds. If this specification exjtly modifies the ICCCM Window Managers
and Clients MUST fulfill these modifications.

2. Non-ICCCM features

There is a number of window management features or behawhich are not specified in the ICCCM,
but are commonly met in modern window managers and deskidmpements.

2.1. Additional States

The ICCCM allows window managers to implement additionaldaw states, which will appear to
clients as substates of NormalState and IconicState. Tworamly met examples are Maximized and
Shaded. A window manager may implement these as propersebstt NormalState and IconicState, or
it may treat them as independent flags, allowing e.g. a masidhivindow to be iconified and to
re-appear as maximized upon de-iconification.

2.1.1. Maximization

Maximization is a very old feature of window managers. Theas even a ZoomedState in early ICCCM
drafts. Maximizing a window should give it as much of the strarea as possible (this may not be the
full screen area, but only a smaller 'workarea’, since thedeiv manager may have reserved certain
areas for other windows). A window manager is expected t@meber the geometry of a maximized
window and restore it upon de-maximization. Modern windoanagers typically allow separate
horizontal and vertical maximization.

With the introduction of the Xinerama extension in X11 Réwhximization has become more involved.
Xinerama allows a screen to span multiple monitors in ayreehfigurable geometry. In such a setting,
maximizing a window would ideally not grow it to fill the whosereen, but only the monitor it is shown
on. There are of course borderline cases for windows crggsonitor boundaries, and 'real’
maximization to the full screen may sometimes be useful.

Extended Window Manager Hints

2.1.2. Shading

Some desktop environments offer shading (also known agcdls an alternative to iconification. A
shaded window typically shows only the titlebar, the cligiridow is hidden, thus shading is not useful
for windows which are not decorated with a titlebar.

2.2. Modality

The WM_TRANSIENT_FOR hint of the ICCCM allows clients to sifg that a toplevel window may
be closed before the client finishes. A typical example odagient window is a dialog. Some dialogs
can be open for a long time, while the user continues to wotkémmain window. Other dialogs have to
be closed before the user can continue to work in the mainawn@his property is called modality.
While clients can implement modal windows in an ICCCM coraptiway using the globally active
input model, some window managers offer support for hagdtiodality.

2.3. Large Desktops

The window manager may offer to arrange the managed windovasdesktop that is larger than the root
window. The screen functions as a viewport on this large td@siifferent policies regarding the
positioning of the viewport on the desktop can be implemgrifde window manager may only allow
the viewport position to change in increments of the scréan(paging) or it may allow arbitrary
positions (scrolling).

To fulfill the ICCCM principle that clients should behave teme regardless whether a window
manager is running or not, window managers which implensge desktops must interpret all
client-provided geometries with respect to the currenvpiert.

2.3.1. Implementation note

There are two options for implementing a large desktop: Tiseifi to keep the managed windows (or, if
reparenting, their frames) as children of the root windowvivMg the viewport is achieved by moving all
managed windows in the opposite direction.

The second alternative is to reparent all managed windoasiedicated large window (somewhat
inappropriately called a 'virtual root’). Moving the viewp is then achieved by moving the virtual root
in the opposite direction.

Both alternatives are completely ICCCM compliant, althiotige second one may be somewhat
problematic for clients trying to figure out the window maeadecorations around their toplevel
windows and for clients trying to draw background imagestmrbot window.

2.4. Sticky windows

A window manager which implements a large desktop typicatilgrs a way for the user to make certain
windows ’stick to the glass’, i.e. these windows will staytted same position on the screen when the
viewport is moved.

Extended Window Manager Hints

2.5. Virtual Desktops

Most X servers have only a single screen. The window managgnintualize this resource and offer
multiple so-called 'virtual desktops’, of which only onercbe shown on the screen at a time. There is
some variation among the features of virtual desktop implaations. There may be a fixed number of
desktops, or new ones may be created dynamically. The sibe afesktops may be fixed or variable. If
the desktops are larger than the root window, their vievgp@eeSection 2.3 may be independent or
forced to be at the same position.

A window manager which implements virtual desktops gemgadfers a way for the user to move
clients between desktops. Clients may be allowed to occug than one desktop simultaneously.

2.5.1. Implementation note

There are at least two options for implementing virtual degg. The first is to use multiple virtual roots
(seeSection 2.3.1and change the current desktop by manipulating the stgakither of the virtual
roots. This is completely ICCCM compliant, but has the issmetlined inSection 2.3.1

The second option is to keep all managed windows as childrdreaoot window and unmap the frames
of those which are not on the current desktop. Unmapped wiadbould be placed in IconicState,
according to the ICCCM. Windows which are actually iconiftedninimized should have the
_NET_WM_STATE_HIDDEN property set, to communicate to paghat the window should not be
represented as "onscreen.”

2.6. Pagers

A pager offers a different Ul for window management taskshtiws a miniature view of the desktop(s)
representing managed windows by small rectangles andstloswuser to initiate various window
manager actions by manipulating these representatiopgdlly offered actions are activation (see
Section 2.8, moving, restacking, iconification, maximization andsiiig. On a large desktop, the pager
may offer a way to move the viewport. On virtual desktops,jthger may offer ways to move windows
between desktops and to change the current desktop.

2.7. Taskbars

A taskbar offers another Ul for window management taskyplically represents client windows as a
list of buttons labelled with the window titles and possildgns. Pressing a button initiates a window
manager action on the represented window, typical actieirgtactivation and iconification. In
environments with a taskbar, icons are often considergupirgriate, since the iconified windows are
already represented in the taskbar.

2.8. Activation

In the X world, activating a window means to give it the inpoit@is. This may not be possible if the
window is unmapped, because it is on a different desktops;Tdtivating a window may involve

Extended Window Manager Hints

additional steps like moving it to the current desktop (caroding to the desktop the window is on),
deiconifying it or raising it.

2.9. Animated iconification

Some window managers display some form of animation whefi¢daifying a window. This may be a
line drawing connecting the corners of the window with thenews of the icon or the window may be
opaquely moved and resized on some trajectory joining tinelgviy location and the icon location.

2.10. Window-in-window MDI

Window-in-window MDI is a multiple document interface knoirom MS Windows platforms.
Programs employing it have a single top-level window whiohtains a workspace which contains the
subwindows for the open documents. These subwindows aozated with window manager frames and
can be manipulated within their parent window just like aaty top-level windows on the root window.

2.11. Layered stacking order

Some window managers keep the toplevel windows not in aesiimgar stack, but subdivide the stack
into several layers. There is a lot of variation among théufies of layered stacking order
implementations. The number of layers may or may not be fikad.layer of a toplevel window may be
explicit and directly modifiable or derived from other profes of the window, e.g. thiype of the
window. The stacking order may or may not be strict, i.e. flotathe user to raise or lower windows
beyond their layer.

2.12. Scope of this spec

This spec tries to address the following issues:

+ Allow clients to influence their initial state with respeotrhaximization, shading, stickiness, desktop,
stacking order.

- Improve the window managers ability to vary window decanasiand maintain the stacking order by
allowing clients to hint the window manager about the typthefr windows.

- Enable pagers and taskbars to be implemented as sepaeats elnd allow them to work with any
compliant window manager.

This spec doesn’t cover any of the following:

« Other IPC mechanisms like ICE or Corba.
- Window manager configuration.
- Window manager documentation.

- Clients appearing on a proper subset of desktops.

Extended Window Manager Hints

- Window-in-window MDI.

The window manager is supposed to be in charge of window neameat policy, so that there is
consistent behavior on the user’s screen no matter who \hretelients.

The spec offers a lot of external control about window manag#ons. This is intended mainly to allow
pagers, taskbars and similar window manager Uls to be imgréea as separate clients. "Ordinary"
clients shouldn’t use these except maybe in response teet diser request (i.e. setting a config option
to start maximized or specifying a -desk n command line awutjn

3. Root Window Properties (and Related Messages)

Whenever this spec speaks about “sending a message to theimdow”, it is understood that the client
is supposed to create a ClientMessage event with the spkcifigents and send it by using a SendEvent
request with the following arguments:

destination root

propagat e Fal se

event - mask (SubstructureNotify| Substruct ureRedirect)
event the specified CientMssage

3.1. _NET_SUPPORTED

_NET_SUPPORTED, ATOM]/ 32

This property MUST be set by the Window Manager to indicatécWiints it supports. For example:
considering NET_WM_STATE both this atom and all suppostedes e.g.
_NET_WM_STATE_MODAL, NET_WM_STATE_STICKY, would be lid. This assumes that
backwards incompatible changes will not be made to the fwithout being renamed).

3.2. NET_CLIENT _LIST

_NET_CLI ENT_LI ST, W NDOW]/ 32
_NET_CLI ENT_LI ST_STACKI NG, W NDOW]/ 32

These arrays contain all X Windows managed by the Window ldana NET_CLIENT_LIST has
initial mapping order, starting with the oldest window. _“NECLIENT_LIST_STACKING has
bottom-to-top stacking order. These properties SHOULDeberd updated by the Window Manager.

3.3. _NET_NUMBER_OF DESKTOPS

_NET_NUMBER_OF DESKTOPS, CARDI NAL/ 32

Extended Window Manager Hints

This property SHOULD be set and updated by the Window Manemgiedicate the number of virtual
desktops.

A Pager can request a change in the number of desktops byhgemdi
_NET_NUMBER_OF_DESKTOPS message to the root window:

_NET_NUMBER_OF DESKTOPS
nmessage_type = _NET_NUMBER_OF_DESKTOPS
format = 32
data.l[0] = new_nunber_of _deskt ops

The Window Manager is free to honor or reject this requeshdfrequest is honored
_NET_NUMBER_OF_DESKTOPS MUST be set to the new number dktdes,
_NET_VIRTUAL_ROOTS MUST be set to store the new number okttgs virtual root window IDs
and _NET_DESKTOP_VIEWPORT and _NET_WORKAREA must also lengied accordingly. The
_NET_DESKTOP_NAMES property MAY remain unchanged.

If the number of desktops is shrinking and _NET_CURRENT_REGP is out of the new range of
available desktops, then this MUST be set to the last aveilddsktop from the new set. Clients that are
still present on desktops that are out of the new range MUSTide=d to the very last desktop from the
new set. For these _NET_WM_DESKTOP MUST be updated.

3.4. _NET_DESKTOP_GEOMETRY

_NET_DESKTOP_GEOVETRY wi dt h, hei ght, CARDI NAL[2]/ 32

Array of two cardinals that defines the common size of all tlgsk (this is equal to the screen size if the
Window Manager doesn’t support large desktops, othentigsequal to the virtual size of the desktop).
This property SHOULD be set by the Window Manager.

A Pager can request a change in the desktop geometry by gemdNET_DESKTOP_GEOMETRY
client message to the root window:

_NET_DESKTOP_CGEQOVETRY
message_type = _NET_DESKTOP_GEQOVETRY

format = 32
data.l[0] = new w dth
data.l[1] = new_hei ght

The Window Manager MAY choose to ignore this message, in wbase
_NET_DESKTOP_GEOMETRY property will remain unchanged.

3.5. NET_DESKTOP_VIEWPORT
_NET_DESKTOP_VI EWPORT X, y, CARDINAL[][2]/32

Array of pairs of cardinals that define the top left corneracie desktop’s viewport. For Window
Managers that don’t support large desktops, this MUST advimeyset to (0,0).

Extended Window Manager Hints

A Pager can request to change the viewport for the currektajeby sending a
_NET_DESKTOP_VIEWPORT client message to the root window:

_NET_DESKTOP_VI EWPORT
message_type = _NET_DESKTOP_VI EWPORT
format = 32
data.l[0] = new_vx
data.l[1] = new_vy

The Window Manager MAY choose to ignore this message, in ivbase
_NET_DESKTOP_VIEWPORT property will remain unchanged.

3.6. NET_CURRENT_DESKTOP
_NET_CURRENT_DESKTOP deskt op, CARDI NAL/ 32

The index of the current desktop. This is always an integevéen 0 and
_NET_NUMBER_OF_DESKTOPS - 1. This MUST be set and updatetthéyVindow Manager. If a
Pager wants to switch to another virtual desktop, it MUSTdsenNET_CURRENT_DESKTOP client
message to the root window:

_NET_CURRENT_DESKTCP
message_type = _NET_CURRENT_DESKTOP
format = 32
data.l[0] = new_i ndex

3.7. _NET_DESKTOP_NAMES

_NET_DESKTOP_NAMES, UTF8_STRI NJ]

The names of all virtual desktops. This is a list of NULL-ténated strings in UTF-8 encodin[TF8].
This property MAY be changed by a Pager or the Window Managangatime.

Note: The number of names could be different from NET _NUNRBBF DESKTOPS. Ifitis less
than NET_NUMBER_OF _DESKTOPS, then the desktops with higlbers are unnamed. If it is
larger than _NET_NUMBER_OF_DESKTOPS, then the excess samiside of the
_NET_NUMBER_OF_DESKTOPS are considered to be reservedsa the number of desktops is
increased.

Rationale: The name is not a necessary attribute of a videsktop. Thus the availability or
unavailability of names has no impact on virtual desktogcfiomality. Since names are set by users and
users are likely to preset names for a fixed number of deskitogmesn’t make sense to shrink or grow
this list when the number of available desktops changes.

3.8. _NET_ACTIVE_WINDOW

_NET_ACTI VE_W NDOW W NDOW 32

Extended Window Manager Hints

The window ID of the currently active window or None if no wimwd has the focus. This is a read-only
property set by the Window Manager. If a Client wants to atévanother window, it MUST send a
_NET_ACTIVE_WINDOW client message to the root window:

_NET_ACTI VE_W NDOW

wi ndow = wi ndow to activate
message_type = _NET_ACTI VE_W NDOW
format = 32

data.l[0] = 0 /* may be used |later */

3.9. NET_WORKAREA
_NET_WORKAREA, x, y, width, height CARDINAL[][4]/32

This property MUST be set by the Window Manager upon caltudahe work area for each desktop.
Contains a geometry for each desktop. These geometriepeciisd relative to the viewport on each
desktop and specify an area that is completely containddmiite viewport. Work area SHOULD be
used by desktop applications to place desktop icons apptefy

The Window Manager SHOULD calculate this space by taking:tiveent page minus space occupied
by dock and panel windows, as indicated by tiNET_WM_STRUTproperty set on client windows.

3.10. NET _SUPPORTING WM _CHECK
_NET_SUPPORTI NG WM CHECK, W NDOW 32

The Window Manager MUST set this property on the root windowe the ID of a child window
created by himself, to indicate that a compliant window nggemas active. The child window MUST also
have the NET_SUPPORTING_WM_CHECK property set to the IEhefchild window. The child
window MUST also have the _NET_WM_NAME property set to thenesof the Window Manager.

Rationale: The child window is used to distinguish an actWiadow Manager from a stale
_NET_SUPPORTING_WM_CHECK property that happens to pairrtother window. If the
_NET_SUPPORTING_WM_CHECK window on the client window isssing or not properly set,
clients SHOULD assume that no conforming Window Managerésent.

3.11. NET_VIRTUAL ROOTS
_NET_VI RTUAL_ROOTS, W NDOW]/ 32

To implement virtual desktops, some Window Managers repalent windows to a child of the root
window. Window Managers using this technique MUST set tihigprty to a list of IDs for windows that
are acting as virtual root windows. This property allowsKzaound setting programs to work with
virtual roots and allows clients to figure out the window mgeraframe windows of their windows.

Extended Window Manager Hints

3.12. NET_DESKTOP_LAYOUT

_NET_DESKTOP_LAYQUT, orientation, x, y, starting_corner CARDI NAL[4]/32
#define _NET_VWWM ORI ENTATI ON_HORZ 0
#define _NET VW ORI ENTATI ON_VERT 1

#define _NET_\WM TOPLEFT 0
#define NET WM TOPRIGHT 1
#define _NET_WM BOTTOVRI GHT 2
#define NET \WM BOTTOMLEFT 3

This property is set by a Pager, not by the Window Manager. When setting this property, the Pager must
own a manager selection (as defined in the ICCCM 2.8). The gearselection is called
_NET_DESKTOP_LAYOUT_8 wheren is the screen number. The purpose of this property is to allow
the Window Manager to know the desktop layout displayed byRhger.

_NET_DESKTOP_LAYOUT describes the layout of virtual dexid relative to each other. More
specifically, it describes the layout used by the owner oftla@ager selection. The Window Manager
may use this layout information or may choose to ignore ie ploperty contains four values: the Pager
orientation, the number of desktops in the X direction, theber in the Y direction, and the starting
corner of the layout, i.e. the corner containing the firsktigs.

Note: In order to inter-operate with Pagers implementingaier draft of this document, Window
Managers should accepta NET DESKTOP_LAYOUT propertgonfth 3 and use
_NET_WM_TOPLEFT as the starting corner in this case.

The virtual desktops are arranged in a rectangle with X ravas¥acolumns. If X times Y does not
match the total number of desktops as specified by NET_NURIBBE- DESKTOPS, the
highest-numbered workspaces are assumed to be nonexi&taet X or Y (but not both) may be
specified as 0 in which case its actual value will be derivethfr NET_NUMBER_OF_ DESKTOPS.

When the orientationis _NET_WM_ORIENTATION_HORZ the degls are laid out in rows, with the
first desktop in the specified starting corner. So a layout %it4 and Y=3 starting in the
_NET_WM_TOPLEFT corner looks like this:

S
| o] 1] 2| 3|
S
| 4] 5] 6] 7]
S
| 8] 9|10]11]
S

With starting_corner _NET_WM_BOTTOMRIGHT, it looks likais:

S
| 11] 10| 9] 8|
S
| 7] 6] 5] 4]
S
| 3] 2| 1] 0]
S

10

Extended Window Manager Hints

When the orientation is _NET_WM_ORIENTATION_VERT the laydor X=4 and Y=3 starting in the
_NET_WM_TOPLEFT corner looks like:

T S S A
| O 3| 6] 9|
T S S A
| 1 4] 7]10]
T S S A
| 2| 5] 8]11]
T S S A

With starting_corner _NET_WM_TOPRIGHT, it looks like:

T S R
| 9 6 3| Of
T S S A
| 10] 7] 4] 1f
T S S A
| 11] 8] 5] 2|
T S S A

The numbers here are the desktop numbers, as for _NET_CURRBBRSKTOP.

3.13. NET_SHOWING_DESKTOP

_NET_SHOW NG_DESKTOP deskt op, CARDI NAL/ 32

Some Window Managers have a "showing the desktop" mode iohwhindows are hidden, and the
desktop background is displayed and focused. If a Windowddgansupports the
_NET_SHOWING_DESKTORP hint, it MUST set it to a value of 1 whbe Window Manager is in
"showing the desktop" mode, and a value of zero if the Windoankger is not in this mode.

If a Pager wants to enter or leave the mode, it MUST send a _ISHOWING_DESKTOP client
message to the root window requesting the change:

_NET_SHOW NG_DESKTOP
nmessage_type = _NET_SHOW NG_DESKTOP
format = 32
data.l[0] = boolean 0 or 1

The Window Manager may choose to ignore this client message.

11

Extended Window Manager Hints

4. Other Root Window Messages

4.1. NET_CLOSE_WINDOW
_NET_CLOSE_W NDOW

Pagers wanting to close a window MUST send a _NET_CLOSE_VOMIxlient message request to
the root window:

_NET_CLCSE_W NDOW
wi nhdow = wi ndow to cl ose
message_type = _NET_CLOSE_W NDOW
format = 32
data.l[0] = 0 /* may be used |later */

The Window Manager MUST then attempt to close the window iipelc

Rationale: A Window Manager might be more clever than thealswethod (send WM_DELETE
message if the protocol is selected, XKillClient othenyisemight introduce a timeout, for example.
Instead of duplicating the code, the Window Manager caryedsithe job.

4.2. NET_MOVERESIZE_WINDOW

_NET_MOVERESI ZE_W NDOW
wi ndow = wi ndow to be noved or resized
message_type = _NET_MOVERES| ZE_W NDOW
format = 32

data.l[0] = gravity and fl ags
data.l[1] = x

data.l[2] =y

data.l[3] = width

data.l[4] = height

The low byte of data.l[0] contains the gravity to use; it maytin any value allowed for the
WM_SIZE_HINTS.win_gravity property: NorthWest (1), Nbrf2), NorthEast (3), West (4), Center (5),
East (6), SouthWest (7), South (8), SouthEast (9) and SteQic A gravity of 0 indicates that the
Window Manager should use the gravity specified in WM_SIZENFS.win_gravity. The bits 8to 11
indicate the presence of x, y, width and height.

Pagers wanting to move or resize a window may send a _NET_MIBR&ZE_WINDOW client
message request to the root window instead of using a CoafRpguest.

Window Managers should treata _NET_MOVERESIZE_WINDOW sage exactly like a
ConfigureRequest (in particular, adhering to the ICCCMg@lieout synthetic ConfigureNotify events),
except that they should use the gravity specified in the ngessa

Rationale: Using a _NET_MOVERESIZE_WINDOW message witti§Gravity allows Pagers to
exactly position and resize a window including its decamdiwithout knowing the size of the
decorations.

12

Extended Window Manager Hints

4.3. NET_WM_MOVERESIZE

_NET_WM MOVERESI ZE
wi ndow = wi ndow to be noved or resized
nmessage_type = _NET_VWM MOVERESI ZE
format = 32
data.l[0] = x_root
data.l[1] = y_root
data.l[2] direction
data.l[3] button

This message allows Clients to initiate window movemengsizing. They can define their own move
and size "grips", whilst letting the Window Manager contia actual operation. This means that all
moves/resizes can happen in a consistent manner as defitieel Window Manager.

When sending this message in response to a button press lewgtah SHOULD indicate the button
which was pressed, x_root and y_root MUST indicate the jposdf the button press with respect to the
root window and direction MUST indicate whether this is a mov resize event, and if it is a resize
event, which edges of the window the size grip applies to. Méending this message in response to a
key event, the direction MUST indicate whether this this is@/e or resize event and the other fields are
unused.

#define _NET WM MOVERES| ZE_SI ZE_TOPLEFT 0
#define _NET WM MOVERES| ZE_S| ZE_TOP 1
#define _NET \WM MOVERES| ZE_SI ZE_TOPRI GHT 2
#define _NET WM MOVERES| ZE_S| ZE_RI GHT 3
#define _NET_\WM MOVERES| ZE_SI ZE_BOTTOMRI GHT 4
#define _NET \WM MOVERES| ZE_SI ZE_BOTTOM 5
#define _NET WM MOVERES| ZE_S| ZE_BOTTOMLEFT 6
#define _NET \WM MOVERES| ZE_SI ZE_LEFT 7
#define _NET WM MOVERES| ZE_MOVE 8
#define _NET WM MOVERES| ZE_SI ZE_KEYBOARD 9
#define _NET WM MOVERES| ZE_MOVE_KEYBOARD 10

/* nmovenment only */
[* size via keyboard */
/* move via keyboard */

The Client MUST release all grabs prior to sending such ngessa

The Window Manager can use the button field to determine teets\on which it terminates the
operation initiated by the _NET_WM_MOVERESIZE messagac8ithere is a race condition between
a client sending the NET_WM_MOVERESIZE message and theraksasing the button, Window
Managers are advised to offer some other means to termhmatgperation, e.g. by pressing the ESC key.

5. Application Window Properties

5.1. NET_WM_NAME
_NET_WM NAME, UTF8_STRI NG

The Client SHOULD set this to the title of the window in UTF-8a@ding. If set, the Window Manager
should use this in preference to WM_NAME.

13

Extended Window Manager Hints

5.2. NET_WM_VISIBLE_NAME

_NET_WM VI SI BLE_NAME, UTF8_STRI NG
If the Window Manager displays a window name other than _NEM_NAME the Window Manager
MUST set this to the title displayed in UTF-8 encoding.

Rationale: This property is for Window Managers that dig@ditle different from the
_NET_WM_NAME or WM_NAME of the window (i.e. xterm <1>, xterm2>, ... is shown, but
_NET_WM_NAME / WM_NAME is still xterm for each window) theby allowing Pagers to display
the same title as the Window Manager.

5.3. NET_WM_ICON_NAME
_NET_WW | CON_NAME, UTF8_ STRI NG

The Client SHOULD set this to the title of the icon for this wiow in UTF-8 encoding. If set, the
Window Manager should use this in preference to WM_ICON_NAM

5.4. NET_WM_VISIBLE_ICON_NAME

_NET_WM VI SI BLE_| CON_NAMVE, UTF8_STRI NG

If the Window Manager displays an icon name other than _NEW WCON_NAME the Window
Manager MUST set this to the title displayed in UTF-8 encgdin

5.5. NET_WM_DESKTOP
_NET_WM DESKTOP deskt op, CARDI NAL/ 32

Cardinal to determine the desktop the window is in (or wamtsdl) starting with O for the first desktop.
A Client MAY choose not to set this property, in which case Wie@dow Manager SHOULD place it as
it wishes. OXFFFFFFFF indicates that the window SHOULD apjoa all desktops.

The Window Manager should honor _NET_WM_DESKTOP wheneweittadrawn window requests to
be mapped.

The Window Manager should remove the property whenever davris withdrawn but it should leave
the property in place when it is shutting down, e.g. in reggdo losing ownership of the WM_Sn
manager selection.

Rationale: Removing the property upon window withdrawdphéegacy applications which want to
reuse withdrawn windows. Not removing the property uportéban allows the next Window Manager
to restore windows to their previous desktops.

A Client can request a change of desktop for a non-withdraimdew by sending a
_NET_WM_DESKTOP client message to the root window:

_NET_WWM DESKTOP

14

Extended Window Manager Hints

wi ndow = the respective client w ndow
nessage_type = _NET_WM DESKTOP

format = 32

data.l[0] = new_desktop

The Window Manager MUST keep this property updated on albaws.

5.6. NET_WM_WINDOW_TYPE
_NET_WM W NDOW TYPE, ATOM]/ 32

This SHOULD be set by the Client before mapping to a list ofregéndicating the functional type of the
window. This property SHOULD be used by the window manageleitermining the decoration,
stacking position and other behavior of the window. The1I@IBHOULD specify window types in order
of preference (the first being most preferable) but MUSTudelat least one of the basic window type
atoms from the list below. This is to allow for extension oé ifst of types whilst providing default
behavior for Window Managers that do not recognize the eita1s.

Rationale: This hint is intended to replace the MOTIF hi@ige of the objections to the MOTIF hints is
that they are a purely visual description of the window dation. By describing the function of the
window, the Window Manager can apply consistent decoratihbehavior to windows of the same
type. Possible examples of behavior include keeping dacig|s on top or allowing pinnable menus /
toolbars to only be hidden when another window has focus {Btep style).

NET\WM W NDOW TYPE_DESKTOP, ATOM
NET\WM W NDOW TYPE_DOCK, ATOM
NET\WM W NDOW TYPE_TOOLBAR, ATOM
NET\WWM W NDOW TYPE_MENU, ATOM
NET\WWM W NDOW TYPE_UTI LI TY, ATOM
NET\WM W NDOW TYPE_SPLASH, ATOM
NET\WWM W NDOW TYPE_DI ALOG, ATOM
NET\WM W NDOW TYPE_NORMAL, ATOM

_NET_WM_WINDOW_TYPE_DESKTOP indicates a desktop featii@s can include a single
window containing desktop icons with the same dimensiorte@screen, allowing the desktop
environment to have full control of the desktop, without tieed for proxying root window clicks.

_NET_WM_WINDOW_TYPE_DOCK indicates a dock or panel featurypically a Window Manager
would keep such windows on top of all other windows.

_NET_WM_WINDOW_TYPE_TOOLBAR and _NET_WM_WINDOW_TYPE_BNU indicate
toolbar and pinnable menu windows, respectively (i.e.iard and menus "torn off" from the main
application). Windows of this type may set the WM_TRANSIENFOR hint indicating the main
application window.

_NET_WM_WINDOW_TYPE_UTILITY indicates a small persistartility window, such as a palette
or toolbox. It is distinct from type TOOLBAR because it doeg norrespond to a toolbar torn off from
the main application. It's distinct from type DIALOG becausisn't a transient dialog, the user will
probably keep it open while they're working. Windows of thype may set the
WM_TRANSIENT_FOR hint indicating the main application wliow.

15

Extended Window Manager Hints

_NET_WM_WINDOW_TYPE_SPLASH indicates that the window ispdash screen displayed as an
application is starting up.

_NET_WM_WINDOW_TYPE_DIALOG indicates that this is a diglavindow. If
_NET_WM_WINDOW_TYPE is not set, then windows with WM_TRANESNT_FOR set MUST be
taken as this type.

_NET_WM_WINDOW_TYPE_NORMAL indicates that this is a norinap-level window. Windows
with neither NET_WM_WINDOW_TYPE nor WM_TRANSIENT_FORt9dUST be taken as this

type.

5.7. NET_WM_STATE
NET\WWM STATE, ATOM]

A list of hints describing the window state. Atoms preserthia list MUST be considered set, atoms not
present in the list MUST be considered not set. The Windowagan SHOULD honor
_NET_WM_STATE whenever a withdrawn window requests to bepea. A Client wishing to change
the state of a window MUST send a _NET_WM_STATE client meggaghe root window (see below).
The Window Manager MUST keep this property updated to reflecturrent state of the window.

The Window Manager should remove the property whenever daviris withdrawn, but it should leave
the property in place when it is shutting down, e.g. in regedo losing ownership of the WM_Sn
manager selection.

Rationale: Removing the property upon window withdrawdphléegacy applications which want to
reuse withdrawn windows. Not removing the property uporidbwn allows the next Window Manager
to restore windows to their previous state.

Possible atoms are:

_NET_WM STATE_MODAL, ATOM

NET\WM STATE_STI CKY, ATOM
_NET_WM STATE_MAXI M ZED_VERT, ATOM
NET\WM STATE_MAXI M ZED_HORZ, ATOM
NET\WM STATE_SHADED, ATOM
NET\WWM STATE_SKI P_TASKBAR, ATOM
_NET_WM STATE_SKI P_PAGER, ATOM
_NET_WM STATE_HI DDEN, ATOM
NET\WM STATE_FULLSCREEN, ATOM
_NET_WM STATE_ABOVE, ATOM

NET\WWM STATE_BELOWN ATOM

An implementation MAY add new atoms to this list. Implemdittas without extensions MUST ignore
any unknown atoms, effectively removing them from the Ii$tese extension atoms MUST NOT start
with the prefix _NET.

_NET_WM_STATE_MODAL indicates that this is a modal dialoggh The WM_TRANSIENT_FOR
hint MUST be set to indicate which window the dialog is a mddalor set to the root window if the
dialog is a modal for its window group.

_NET_WM_STATE_STICKY indicates that the Window Manager@BLD keep the window’s
position fixed on the screen, even when the virtual desktaoglsc

16

Extended Window Manager Hints

_NET_WM_STATE_MAXIMIZED_{VERT,HORZ} indicates that thevindow is
{vertically,horizontally} maximized.

_NET_WM_STATE_SHADED indicates that the window is shaded.

_NET_WM_STATE_SKIP_TASKBAR indicates that the window siftbnot be included on a taskbar.
This hint should be requested by the application, i.e. itdatds that the window by nature is never in the
taskbar. Applications should not set this hintif _NET_WMINDOW_TYPE already conveys the exact
nature of the window.

_NET_WM_STATE_SKIP_PAGER indicates that the window skdowbt be included on a Pager. This
hint should be requested by the application, i.e. it indisdhat the window by nature is never in the
Pager. Applications should not set this hintif NET_WM_VII®@W_TYPE already conveys the exact
nature of the window.

_NET_WM_STATE_HIDDEN should be set by the Window Manageintticate that a window would
not be visible on the screen if its desktop/viewport werévacnd its coordinates were within the screen
bounds. The canonical example is that minimized windowsikhioe in the
_NET_WM_STATE_HIDDEN state. Pagers and similar applmasishould use
_NET_WM_STATE_HIDDEN instead of WM_STATE to decide wheth@display a window in
miniature representations of the windows on a desktop.

Implementation note: if an Application asks to toggle NEWM_STATE_HIDDEN the Window
Manager should probably just ignore the request, since _N¥N_STATE_HIDDEN is a function of
some other aspect of the window such as minimization, ratfzgr an independent state.

_NET_WM_STATE_FULLSCREEN indicates that the window slbfill the entire screen and have no
window decorations. For example, a presentation prograaiduese this hint.

_NET_WM_STATE_ABOVE indicates that the window should betop of most windows (seSection
7.10for details).

_NET_WM_STATE_BELOW indicates that the window should b&lemost windows (seS&ection
7.10for details).

_NET_WM_STATE_ABOVE and _NET_WM_STATE_BELOW are mainlyeant for user preferences
and should not be used by applications e.g. for drawing @teto their dialogs (the Urgency hint
should be used in that case, Sextion 7.4’

To change the state of a mapped window, a Client MUST send & MBM_STATE client message to
the root window (window is the respective window, type _NBVMM_STATE, format 32, [[0]=xthe
action, as listed below, [[1]=<First property to alter, [[2]=<Second property to altes). This
message allows two properties to be changed simultanespsglgifically to allow both horizontal and
vertical maximization to be altered together. I[2] MUST le¢ ® zero if only one property is to be
changed. I[0], the action, MUST be one of:

_NET_WM STATE_REMOVE 0 /* renove/ unset property */
_NET_WM STATE_ADD 1 /* add/set property */
_NET_WM STATE_TOGGLE 2 /* toggle property */

See also the implementation notesusgencyandfixed size windows

17

Extended Window Manager Hints

5.8. NET_WM_ALLOWED_ ACTIONS
NET\WWM ALLOWED ACTI ONS, ATOM]

A list of atoms indicating user operations that the Windownsiger supports for this window. Atoms
present in the list indicate allowed actions, atoms notgres the list indicate actions that are not
supported for this window. The Window Manager MUST keep fiigperty updated to reflect the
actions which are currently "active" or "sensitive" for andow. Taskbars, Pagers, and other tools use
_NET_WM_ALLOWED_ACTIONS to decide which actions shouldribade available to the user.

Possible atoms are:

NET\WWM ACTI ON_MOVE, ATOM

NET\WWM ACTI ON_RESI ZE, ATOM
_NET_WWM ACTI ON_M NI M ZE, ATOM
NET\WM ACTI ON_SHADE, ATOM

NET\WM ACTI ON_STI CK, ATOM

NET\WM ACTI ON_MAXI M ZE_HORZ, ATOM
NET\WWM ACTI ON_MAXI M ZE_VERT, ATOM
NET\WM ACTI ON_FULLSCREEN, ATOM
NET\WM ACTI ON_CHANGE_DESKTOP, ATOM
NET\WM ACTI ON_CLOSE, ATOM

An implementation MAY add new atoms to this list. Implemdittas without extensions MUST ignore
any unknown atoms, effectively removing them from the Ti$tese extension atoms MUST NOT start
with the prefix _NET.

Note that the actions listed here are those thavmelow Manager will honor for this window. The
operations must still be requested through the normal nmesima outlined in this specification. For
example, NET_WM_ACTION_CLOSE does not mean that clieatssend a
WM_DELETE_WINDOW message to this window; it means thatroieecan use a
_NET_CLOSE_WINDOW message to ask the Window Manager to do so

Window Managers SHOULD ignore the value of _NET_WM_ALLOWEACTIONS when they
initially manage a window. This value may be left over fromraypous Window Manager with different
policies.

_NET_WM_ACTION_MOVE indicates that the window may be mowedund the screen.

_NET_WM_ACTION_RESIZE indicates that the window may bdzed. (Implementation note:
Window Managers can identify a non-resizable window begdgsminimum and maximum size in
WM_NORMAL_HINTS will be the same.)

_NET_WM_ACTION_MINIMIZE indicates that the window may beanified.
_NET_WM_ACTION_SHADE indicates that the window may be std

_NET_WM_ACTION_STICK indicates that the window may hawesticky state toggled (as for
_NET_WM_STATE_STICKY). Note that this state has to do witewports, not desktops.

_NET_WM_ACTION_MAXIMIZE_HORZ indicates that the windoway be maximized horizontally.
_NET_WM_ACTION_MAXIMIZE_VERT indicates that the window ay be maximized vertically.
_NET_WM_ACTION_FULLSCREEN indicates that the window magy/firought to fullscreen state.

18

Extended Window Manager Hints
_NET_WM_ACTION_CHANGE_DESKTOP indicates that the windovay be moved between
desktops.

_NET_WM_ACTION_CLOSE indicates that the window may be elbéi.e. a
WM_DELETE_WINDOW message may be sent).

5.9. NET_WM_STRUT
_NET_WM STRUT, left, right, top, bottom CARDI NAL[4]/32

This property MUST be set by the Client if the window is to megespace at the edge of the screen. The
property contains 4 cardinals specifying the width of theerged area at each border of the screen. The
order of the borders is left, right, top, bottom. The cliem¥Ichange this property at any time, therefore
the Window Manager MUST watch out for property notify events

The purpose of struts is to reserve space at the borders dé#ieop. This is very useful for a docking
area, a taskbar or a panel, for instance. The Window Man&geilé know about this reserved space in
order to be able to preserve the space. Also maximized wiadtwuld not cover that reserved space.

Rationale: A simple "do not cover" hint is not enough for degwith e.g. auto-hide panels.

Notes: An auto-hide panel SHOULD set the strut to be its mimmhidden size. A "corner" panel that
does not extend for the full length of a screen border SHOULL set one strut.

5.10. NET WM_ICON_GEOMETRY
_NET_WM_ | CON_GEOVETRY, X, y, width, height, CARDI NAL[4]/32

This optional property MAY be set by stand alone tools likaskbar or an iconbox. It specifies the
geometry of a possible icon in case the window is iconified.

Rationale: This makes it possible for a Window Manager tpldisa nice animation like morphing the
window into its icon.

5.11. NET_WM_ICON
NET\WM_| CON CARDI NAL[][2+n] / 32

This is an array of possible icons for the client. This speatfon does not stipulate what size these icons
should be, but individual desktop environments or toolkitsy do so. The Window Manager MAY scale
any of these icons to an appropriate size.

This is an array of 32bit packed CARDINAL ARGB with high byteibhg A, low byte being B. The first
two cardinals are width, height. Data is in rows, left to tighd top to bottom.

5.12. NET_WM_PID

_NET_WWM Pl D CARDI NAL/ 32

19

Extended Window Manager Hints

If set, this property MUST contain the process ID of the dli@wning this window. This MAY be used
by the Window Manager to kill windows which do not respondite t NET_WM_PING protocol.

If _NET_WM_PID is set, the ICCCM-specified property WM_CINE_MACHINE MUST also be set.
While the ICCCM only requests that WM_CLIENT_MACHINE is sdb a string that forms the name
of the machine running the client as seen from the machingmgrthe server” conformance to this
specification requires that WM_CLIENT _MACHINE be set to thity-qualified domain name of the
client’s host.

See also the implementation noteskilting hung processes

5.13. NET_WM_HANDLED ICONS
_NET_WM HANDLED | CONS

This property can be set by a Pager on one of its own toplevelavis to indicate that the Window
Manager need not provide icons for iconified windows, foregee if it is a taskbar and provides buttons
for iconified windows.

6. Window Manager Protocols

6.1. NET_WM_PING

This protocol allows the Window Manager to determine if tHee is still processing X events. This
can be used by the Window Manager to determine if a window lfaiits to close after being sent
WM_DELETE_WINDOW has stopped responding or has stallegéone other reason, such as waiting
for user confirmation. A Client SHOULD indicate that it is iilg to participate in this protocol by

listing _NET_WM_PING in the WM_PROTOCOLS property of théecit window.

A Window Manager can use this protocol at any time by sendicigeat message as follows:

type = dient Message

wi ndow = the respective client w ndow
nmessage_t ype = WM PROTOCOLS

format = 32

data. | [0]
data. |l [1]

_NET_WWM Pl NG
ti mestanp

A participating Client receiving this message MUST senditibto the root window immediately, by
setting window = root, and calling XSendEvent. The Client ®IUNOT alter the timestamp, as this can
be used by the Window Manager to uniquely identify the ping.

The Window Manager MAY Kill the Client (using NET_WM_ PIDit fails to respond to this protocol
within a reasonable time.

See also the implementation noteskilting hung processes

20

Extended Window Manager Hints

7. Implementation notes

7.1. Desktop/workspace model

This spec assumes a desktop model that consists of one orcorapetely independent desktops which
may or may not be larger than the screen area. When a deshksomges than the screen it is left to the
Window Manager if it will implement scrolling or paging.

7.2. File Manager desktop

This spec suggests implementing the file manager desktombpypimg a desktop-sized window (no
shape) to all desktops, with _NET_WM_WINDOW_TYPE_DESKT®Rs makes the desktop
focusable and greatly simplifies implementation of the fikniager. It is also faster than managing lots
of small shaped windows. The file manager draws the backgronithis window. There should be a
root property with a window handle for use in applicatiorsttvant to draw the background (xearth).

7.3. Implementing enhanced support for application transi ent
windows

If the WM_TRANSIENT_FOR property is set to None or Root wimdohe window should be treated as
a transient for all other windows in the same group. It hasilmeged that this is a slight ICCCM
violation, but as this behavior is pretty standard for marolkits and window managers, and is
extremely unlikely to break anything, it seems reasonabtibtument it as standard.

7.4. Urgency

Dialog boxes should indicate their urgency level (inforimabr warning) using the urgency bit in the
WM_HINTS.flags property, as defined in the ICCCM.

7.5. Fixed size windows

Windows can indicate that they are non-resizable by settimpeight = maxheight and minwidth =
maxwidth in the ICCCM WM_NORMAL_HINTS property. The Windowanager MAY decorate such
windows differently.

7.6. Pagers and Taskbars

This specification attempts to make reasonable provisimm&ihdow manager independent pagers and
taskbars. Window Managers that require / desire additifumatdtionality beyond what can be achieved
using the mechanisms set out in this specification may chiodsgplement their own pagers, which
communicate with the Window Manager using further, windoanager specific hints, or some other
means.

21

Extended Window Manager Hints

Pagers should decide whether to show a miniature versiomvafdow using the following guidelines:

- Ifeither NET_WM_STATE_SKIP_PAGER or NET_WM_STATE_ HIEN are set on a window,
then the pager should not show that window.

- The pager may choose not to display windows with certain s¢éimgypes; this spec has no
recommendations, but common practice is to avoid disptayMET_WM_WINDOW_TYPE_DOCK
for example.

. Ifthe _NET_WM_STATE_SKIP_PAGERand NET_WM_STATE_HIDNHints are not present,
and the Window Manager claims to support _NET_WM_STATE_BHN, then the window should
be shown if it's in either NormalState or IconicState.

- For Window Managers that do not support _NET_WM_STATE_HHEN) the pager should not show
windows in IconicState. These Window Managers are probailyg an older version of this
specification.

7.7. Window Movement

Window manager implementors should refer to the ICCCM fdinitéve specifications of how to handle
MapRequest and ConfigureRequest events. However, singe éispects of the ICCCM are easily
misread, this document offers the following clarifications

« Window managers MUST honor the win_gravity field of WM_NORMA]INTS for both
MapRequest _and_ ConfigureRequest events (ICCCM Versin2.1.2.3 and §4.1.5)

- Applications are free to change their win_gravity settihgray time.

If an application changes its gravity then the Window Manai@uld adjust the reference point, so
that the client window will not move as the result. For exagripClient’s gravity was
NorthWestGravity and reference point was at the top-leftheoof the frame window, then after
change of gravity to the SouthEast reference point shoulttlhested to point to the lower-right corner
of the frame.

- When generating synthetic ConfigureNotify events, thetfmrsgiven MUST be the top-left corner of
the client window in relation to the origin of the root winddiae., ignoring win_gravity) (ICCCM
Version 2.0, §4.2.3)

- XMoveWindow(w,x,y) behavior depends on the window gravitpon receiving a request from a
client application the Window Manager calculates a newregfee point, based on the client window’s
own size, border width and gravity. For any given client vanddimensions (width, height) and
border width (bw), the reference point will be placed at:

Gravity: ref _x: ref y:
StaticGravity X y

NorthWestGravity X-bw y-bw
NorthGravity x+(width/2) y-bw

22

Extended Window Manager Hints

NorthEastGravity x+width-+bw y-bw
EastGravity x+width+bw y+(height/2)
SouthEastGravity x+width-+bw y+height+bw
SouthGravity x+(width/2) y+height+bw
SouthWestGravity X-bw y+height+bw
WestGravity X-bw y+(height/2)
CenterGravity X+(width/2) y+(height/2)

The Window Manager will use the reference point as calcdlat®ove, until the next XMoveWindow
request. The Window Manager will place frame decoratiorikénfollowing position, based on the
window gravity :

StaticGravity:

window’s left top corner will be placed at (ref_x,ref_y)
NorthWestGravity:

window frame’s left top corner will be placed at (ref_x,rgf
NorthGravity:

window frame’s top side’s center will be placed at (ref k.58
NorthEastGravity:

window frame’s right top corner will be placed at (ref_x,ref
EastGravity:

window frame’s right side’s center will be placed at (refef, y)
SouthWestGravity:

window frame’s left bottom corner will be placed at (ref ef,ry)
SouthGravity:

window frame’s bottom side’s center will be placed at (refek y)
SouthEastGravity:

window frame’s right bottom corner will be placed at (refref, y)
WestGravity:

window frame’s left side’s center will be placed at (ref ef,ry)
CenterGravity:

window frame’s center will be placed at (ref_x,ref_y)

Implementation Note for Application developers:

When a client window is resized - its reference point doesmmie. So for example if window has
SouthEastGravity and it is resized - the bottom-right cooféts frame will not move but instead
top-left corner will be adjusted by the difference in size.

23

Extended Window Manager Hints

- Implementation Note for window manager developers:

When calculating the reference point at the time of initlaement - the initial window’s width
should be taken into consideration, as if it was the frameHfisrwindow.

7.8. Window-in-Window MDI

The authors of this specification acknowledge that there istandard method to allow the Window
Manager to manage windows that are part of a Window-in-WiniitD| application. Application

authors are advised to use some other form of MDI, or to pr@pasechanism to be included in a future
revision of this specification.

7.9. Killing Hung Processes

If processes fail to respond to the _NET_WM_PING protocoETNWM_PID may be used in
combination with the ICCCM specified WM_CLIENT_MACHINE tdteampt to kill a process.

WM_CLIENT_MACHINE is usually set by calling XSetWMPropess(). The hostname for the current
host can be be retrieved using gethostname(), when gettiosfi)is not available on the platform
implementors may use the value of the nodename field of attaome as returned by uname(). Note
also that the value of WM_CLIENT_MACHINE is not guaranteede a fully fully-qualified domain
name of the host. An example of how to retrieve the hostname:

int net_get_hostname (char *buf, size_t maxlen)
{

#i f def HAVE_GETHOSTNAME

if (buf == NULL) return O;

get host nane (buf, naxlen);
buf [maxlen - 1] = "'\0";

return strlen(buf);
#el se

struct utsnane nane;
size_t len;

if (buf == NULL) return O;

unane (&nane);
len = strlen (nane.nodenane);

if (len >= maxlen) len = maxlen - 1;
strncpy (buf, nane.nodenane, |en);

buf[len] ="'\0";

return | en;

24

Extended Window Manager Hints

#endi f
}

7.10. Stacking order

To obtain good interoperability between different DeskEswironments, the following layered stacking
order is recommended, from the bottom:

- windows of type NET_WM_TYPE_DESKTOP
- windows having state _ NET_WM_STATE_BELOW
- windows not belonging in any other layer

- windows of type NET_WM_TYPE_DOCK (unless they have stNET WM_TYPE_BELOW)
and windows having state _ NET_WM_STATE_ABOVE

- focused windows having state NET_WM_STATE_FULLSCREEN

Windows that are transient for another window should be képte this window.

The window manager may choose to put some windows in diffesteisking positions, for example to
allow the user to bring currently a active window to the tod agturn it back when the window looses
focus.

8. References

[UTF8]
F. Yergeau,"UTF-8, a transformation format of ISO 106462279

[ICCCM]

David Rosenthal and Stuart W. Marks, "Inter-Client Comneation Conventions Manual (Version
2.0)", X Consortium Standard, X Version 11, Release 6.3

9. Copyright

Copyright (C) 2000, 2001, 2002 See Contributors List

Permission is hereby granted, free of charge, to any pets@ining a copy of this software and
associated documentation files (the "Software"), to detilérSoftware without restriction, including
without limitation the rights to use, copy, modify, mergepfish, distribute, sublicense, and/or sell

25

Extended Window Manager Hints
copies of the Software, and to permit persons to whom then@odtis furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice dteihcluded in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NEVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUOF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS INHE
SOFTWARE.

10. Contributors

Sasha Vasko
Bradley T. Hughes
Dominik Vogt
Havoc Pennington
Jeff Raven

Jim Gettys

John Harper
Julian Adams
Matthias Ettrich
Micheal Rogers
Nathan Clemons
Tim Janik

Tomi Ollila

Sam Lantinga
The Rasterman
Paul Warren
Owen Taylor
Marko Macek
Greg Badros
Matthias Clasen
David Rosenthal

Lubos Lunak

26

Extended Window Manager Hints

11. Change history

11.1. Changes since 1.1

« Changed WM_CLIENT_NAME(STRING) from suggested to reqdifer NET_WM_PID.
- Specification and sample code for the content of WM_CLIENAME(STRING).

. Added NET_WM_WINDOW_TYPE_SPLASH, NET_WM_WINDOW_TYPHTILITY.
. Added NET_WM_STATE_FULLSCREEN.

. Added _NET_WM_ALLOWED_ACTIONS.

« Added NET_WM_STATE_HIDDEN and clarified purpose of _ NETMAWSTATE_SKIP_PAGER
and _NET_WM_STATE_SKIP_TASKBAR. Changed section on \dttdesktop implementation to
suggest ICCCM compliance regarding IconicState, usingT N#M_STATE_HIDDEN to avoid
confusion. Added implementation note for pagers on wheridplaly a window.

- Added button field and new directions for keyboard-initibéetions to the
_NET_WM_MOVERESIZE message.

« Added advice on removing _NET_WM_STATE and _NET_WM_DESHKT®hen a window is
withdrawn.

- Added NET_DESKTOP_LAYOUT to allow a Pager to specify intesktop geometry.
« Added _NET_SHOWING_DESKTOP.

« Added _NET_WM_STATE_ABOVE and _NET_WM_STATE_BELOW andexommended layered
stacking order.

. Added _NET_MOVERESIZE_WINDOW.
« Improve markup of citations.

« Explain _NET_DESKTOP_GEOMETRY and _NET_WM_HANDLED_IC@Nh more detail and
improve the explanation of WM_CLIENT_MACHINE iSection 7.9

- Add Lubos Lunak to the list of contributors.

11.2. Changes since 1.0

« Fix doctype, add author info, update data.

- Change specification description wording to be more ine&sind to reflect the joint nature of the
specification.

+ Fix miscellaneous typographical, grammar and spellingrsrr

« Clarified _NET_SUPPORTED to include ALL atoms, not just theperty names.
+ Various corrections to use of MUST and SHOULD.

« Fix problemin _NET_WM_ICON where 'bytes’ should have beeartinals’

27

Extended Window Manager Hints

- Replaced ISO-8559-1 characters with entities.

11.3. Changes since 1.0pre5

- Change history moved to end.

« UTF-8 Reference updated.

« Window Gravity information updated.
- Copyright Added.

- Minor typo corrections.

11.4. Changes since 1.0pre4

- Clarified the interpretation of client-provided geometrim large desktops.

« Added more explanation for _NET_DESKTOP_NAMES.

. Added NET_WM_ICON_NAME and NET_WM_VISIBLE_ICON_NAME.
« Tried to improve the wording of _NET_WM_STRUT explanation.

. Changed _NET_WORKAREA to an array of viewport-relative gedries.

- Updated list of “dependent” properties for _ NET_NUMBER_@ESKTOPS to include
_NET_WORKAREA and _NET_DESKTOP_VIEWPORT.

- Tidied formatting of all client messages.

11.5. Changes since 1.0pre3

+ Added information about common non-ICCCM features.

- Added explanation of sending messages to the root window.

« Removed XA _ prefix from type names.

- Clarified that “mapping order” refers to inital mapping ampesify the directions of both orders.
- Clarified that desktops have a common size specified by _NEBKITOP_GEOMETRY.
- Rewrote explanation of _NET_DESKTOP_VIEWPORT.

. Tidied formatting of _NET_CURRENT_DESKTOP.

« Replaced “window handle” by “window ID”.

- Tidied formatting of NET_WORKAREA.

- Rewrote the motivation for NET_VIRTUAL_ROOTS.

« Added advice on Pointer grabs to _NET_WM_MOVERESIZE.

28

Extended Window Manager Hints

« Fixed typosin _NET_WM_STATE.

. Added NET_WM_STATE_SKIP_PAGER.

- Tidied formatting of _NET_WM_STRUT.

- Tidied formatting of _NET_WM_ICON_GEOMETRY.

11.6. Changes since 1.0pre2

. _NET_SET_NUMBER_OF_DESKTOPS-> NET_NUMBER_OF_DESKTIBr consistency.
. _NET_WM_VISIBLE_NAME_STRING -> NET_WM_VISIBLE_NAME foconsistency.

- NET_WM_STATE: added explanation of permitted extensiéwsled explanation of being set / not
set.

« Spellchecked, corrected various typos.

- UTF8 -> UTF-8 for consistency.

- added references to the ICCCM an UTF-8 (incomplete).
- added data and event formats where missing.

. clarified NET_SUPPORTING_WM_CHECK.

. fixed formatting of _NET_CLOSE_WINDOW message.

11.7. Changes since 1.0prel

« Removed implementation note concerning Gnome'’s (pot@fitamanager behavior.

- The Window Movement section of the implementation notestieesn revised.

11.8. Changes since 1.9f

- Revised revision number for first accepted release 1.9XX0preXX.

« Prerequisites for adoption of this specification added.

- Tidied formatting of _NET_CURRENT_DESKTOP for consistgnc

- Tidied formatting of _NET_ACTIVE_WINDOW for consistendgemoved doubled text.
- Tidied formatting of _NET_WM_DESKTOP for consistency.

- Killing Hung Processes implementation note added. _NET_\WND and _NET_WM_PING now
link to this.

- Clarified x_rootand y_root meaning for _NET_WM_MOVERESIZE
« Added contributor list.

29

Extended Window Manager Hints

11.9. Changes since 1.9e

. Added NET_WM_VISIBLE_NAME_STRING

« Removed ambiguity from NET_NUMBER_OF_DESKTOPS and _NBESKTOP_NAMES in
combination.

. Set NET_WM_MOVERESIZE format to 32 for consistency.
« Removed _NET_PROPERTIES.
« Removed comment from _NET_WM_MOVERESIZE.

11.10. Changes since 1.9d

. Added NET_VIRTUAL_ROOTS

- Added note about ICCCM compliant window moves.
. Added NET_WM_HANDLED ICONS

. Added NET_SUPPORTING_WM_CHECK

- Removed degrees of activation

11.11. Changes since 1.9c

« Removed packaging of hints into 2 X properties. Jim Gettyints®mut that the performance gains of
fewer round trips can be better achieved using Xlib routines

« Clarified that _NET_DESKTOP_VIEWPORT is in pixels

« _NET_DESKTOP_VIEWPORT is now an array, one for each desktoallow for different active
viewports on different desktops

« NET_WM_STRUT now only applies on desktops on which thentlis visible

- Introduced RFC 2119 language, and attempted to clarifydles of the Window Manager, Pagers and
Applications

. Added NET_WM_NAME

- _NET_DESKTOP_NAMES now in UTF8

« Desktops now start from O

. Added NET_WM_PID

« Added _NET_WM_PING protocol

« Added _NET_WM_STATE_SKIP_TASKBAR

30

Extended Window Manager Hints

11.12. Changes since 1.9b

- Removed NET_NUMBER_OF _DESKTOPS client message, as itapgunnecessarily with
NET{INSERT/DELETE} DESKTOP.

« Replaced NET_WM_LAYER and NET_WM_HINTS with _NET_WM_WDOW_TYPE
functional hint.

. Changed _NET_WM_STATE to a list of atoms, for extensibility

- Expanded description of _NET_WORKAREA and _NET_WM_STRUT.
« Removed _NET_WM_SIZEMOVE_NOTIFY protocol.

- Added degrees of activation to _NET_ACTIVE_WINDOW clienéssage
. Added NET_WM_ICON

« My comments are in [[]]. Comments from Marko’s draft are iM1:]]

31

