Extended Window Manager Hints

5 November 2000

Table of Contents

IO 1 4 oo [T 1 ' o ST 1
2. NON-TCCCM FEALUI S ...ttt sttt b bbbt se bt e e b e st et e s e sbe st st ebesbebeseebe e 2
3. Root Window Properties (+Related M ESSAgES)cvieiririrrerisiciisieie sttt s siene s 5
4. Other ROOt WINAOW M ESSAJES.......cveueeeiiietirisie sttt sttt sttt s st s e senesnenes 9
5. ApPlication WiINAOW PrOPEItIEScviuiiriere sttt sttt sttt e 10
6. WiIiNdoW M anager ProtOCOIS ..ottt e 15
7. I MPIEMENTALION NOLES......c.iiiieieeie ettt ettt e b et 15
B REFEIBNCES. ...t bbbt 18
LS 2 @00/ o o] OSSR 18
L0, CONEIIDULON S, bbbttt en ettt b e 19
I O T= g To T= T o YRS 20

1. Introduction

1.1. Version

This spec is version 1.0.

1.2. What is this spec?

This spec defines interactions between window managerkcafpns and the utilities that form part of
a desktop environment. It builds on the ICCCM [2], which definvm/client interactions at a lower
level. It was born out of a need to replace the original Gnoniv §gecification, although this
specification has been designed to be independent of anyeské&og environment.

1.3. Language used in this specification

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHAL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in thisdocument are to be
interpreted as described in RFC 2119.

The key words "Window Manager" refer to a window manager Wigcadopting this specification.
"Pager" refers to desktop utility applications, includpaigers and taskbars. "Application” refers to other
clients. "Clients" refers to Pagers + Applications ie. altl¥ents, except for the Window Manager.

Extended Window Manager Hints

1.4. Prerequisites for adoption of this specification

Window Managers and Clients which aim to fulfil this specifica MUST adhere to the ICCCM on
which this specification builds. If this specification exjtly modifies the ICCCM Window Managers
and Clients MUST fulfil these modifications.

2. Non-ICCCM features

There is a number of window management features or behaawhich are not specified in the ICCCM,
but are commonly met in modern Window Managers and Desktepr&@rmments.

2.1. Additional States

The ICCCM allows Window Managers to implement additionatdaw states, which will appear to
clients as substates of NormalState and IconicState. Twmmnly met examples are Maximized and
Shaded. A Window Manager may implement these as properatabgif NormalState and IconicState,
or it may treat them as independent flags, allowing e.g. amiarid window to be iconified and to
re-appear as maximized upon de-iconification.

2.1.1. Maximization

Maximization is a very old feature of Window Managers. Thees even a ZoomedState in early
ICCCM drafts. Maximizing a window should give it as much oétécreen area as possible (this may not
be the full screen area, but only a smaller 'workarea’, stheeindow Manager may have reserved
certain areas for other windows). A Window Manager is expetd remember the geometry of a
maximized window and restore it upon de-maximization. Mod&indow Managers typically allow
separate horizontal and vertical maximization.

With the introduction of the Xinerama extension in X11 Réwaximization has become more involved.
Xinerama allows a screen to span multiple monitors in ayreehfigurable geometry. In such a setting,
maximizing a window would ideally not grow it to fill the whosereen, but only the monitor it is shown
on. There are of course borderline cases for windows crggsonitor boundaries, and 'real’
maximization to the full screen may sometimes be useful.

2.1.2. Shading

Some Desktop Environments offer shading (also known asppés an alternative to iconfication. A
shaded window typically shows only the titlebar, the cligiridow is hidden, thus shading is not useful
for windows which are not decorated with a titlebar.

Extended Window Manager Hints

2.2. Modality

The Window Manager_TRANSIENT_FOR hint of the ICCCM allowignts to specify that a toplevel
window may be closed before the client finishes. A typicahepke of a transient window is a dialog.
Some dialogs can be open for a long time, while the user coggito work in the main window. Other
dialogs have to be closed before the user can continue toiwdike main window. This property is
called modality. While clients can implement modal windawsn ICCCM compliant way using the
globally active input model, some Window Managers offeqmupfor handling modality.

2.3. Large Desktops

The Window Manager may offer to arrange the managed windovesdesktop that is larger than the
root window. The screen functions as a viewport on this laegktop. Different policies regarding the
positioning of the viewport on the desktop can be implemeriide Window Manager may only allow
to change the viewport position in increments of the scréan(paging) or it may allow arbitrary
positions (scrolling).

To fulfill the ICCCM principle that clients should behave theame regardless wether a Window Manager
is running or not, Window Managers which implement largekttess must interpret all client-provided
geometries with respect to the current viewport.

2.3.1. Implementation note

There are two options for implementing a large desktop: Tiseifi to keep the managed windows (or, if
reparenting, their frames) as children of the root windowviMg the viewport is achieved by moving all
managed windows in the opposite direction.

The second alternative is to reparent all managed windoasiedicated large window (somewhat
inappropriately called a 'virtual root’). Moving the viewp is then achieved by moving the virtual root
in the opposite direction.

Both alternatives are completely ICCCM compliant, althiotige second one may be somewhat
problematic for clients trying to figure out the Window Maeaglecorations around their toplevel
windows and for clients trying to draw background imagestmrbot window.

2.4. Sticky windows

A Window Manager which implements a large desktop typicaffers a way for the user to make certain
windows ’stick to the glass’, i.e. these windows will staytted same position on the screen when the
viewport is moved.

2.5. Virtual Desktops

Most X servers have only a single screen. The Window Managgrvintualize this resource and offer
multiple so-called 'virtual desktops’, of which only onerche shown on the screen at a time. There is
some variation among the features of virtual desktop implaations. There may be a fixed number of

Extended Window Manager Hints

desktops, or new ones may be created dynamically. The sibe afesktops may be fixed or variable. If
the desktops are larger than the root window, their vievgp@eeSection 2.3 may be independent or
forced to be at the same position.

A Window Manager which implements virtual desktops gengitfers a way for the user to move
clients between desktops. Clients may be allowed to occugpg than one desktop simultaneously.

2.5.1. Implementation note

There are at least two options for implementing virtual degg. The first is to use multiple virtual roots
(seeSection 2.3.1and change the current desktop by manipulating the stgakiter of the virtual
roots. This is completely ICCCM compliant, but has the issmetlined inSection 2.3.1

The second option is to keep all managed windows as childrdreaoot window and unmap the frames
of those which are not on the current desktop. This puts ibatslin an undefined ICCCM state, since
they are unviewable, but not iconic. In practice, this seentzause no problems and the ICCCM
compliant alternative to iconify all clients on non-curteesktops (without showing their icons) is
clearly not acceptable.

2.6. Pagers

A pager offers a different Ul for window management taskshtiws a miniature view of the desktop(s)
representing managed windows by small rectangles andstloswuser to initiate various Window
Manager actions by manipulating these representatiopécdly offered actions are activation (see
Section 2.8, moving, restacking, iconification, maximization andsiiey. On a large desktop, the pager
may offer a way to move the viewport. On virtual desktops,thger may offer ways to move windows
between desktops and to change the current desktop.

2.7. Taskbars

A taskbar offers another Ul for window management taskyplically represents client windows as a
list of buttons labelled with the window titles and possildgns. Pressing a button initiates a Window
Manager action on the represented window, typical acti@nsgbactivation and iconification. In
environments with a taskbar, icons are often considergupirgriate, since the iconified windows are
already represented in the taskbar.

2.8. Activation

In the X world, activating a window means to give it the inpoit@is. This may not be possible if the
window is unmapped, because it is on a different desktops;Téutivating a window may involve
additional steps like moving it to the current desktop (caroding to the desktop the window is on),
deiconifying it or raising it.

Extended Window Manager Hints

2.9. Animated iconification

Some Window Managers display some form of animation whey)ifaamfying a window. This may be a
line drawing connecting the corners of the window with theness of the icon or the window may be
opaquely moved and resized on some trajectory joining tinelgviy location and the icon location.

2.10. Window-in-window MDI

Window-in-window MDI is a multiple document interface knovirom MS Windows platforms.
Programs employing it have a single top-level window whiohtains a workspace which contains the
subwindows for the open documents. These subwindows aceated with Window Manager frames
and can be manipulated within their parent window just likéirmary top-level windows on the root
window.

2.11. Scope of this spec

This spec tries to address the following issues:

- Allow clients to influence their initial state with respeotrhaximization, shading, stickyness, desktop.

« Improve the Window Managers ability to vary window decavas by allowing clients to hint the
Window Manager about the type of their windows.

- Enable pagers and taskbars to be implemented as sepaeats elind allow them to work with any
compliant Window Manager.

This spec doesn’t cover any of the following:

« Other IPC mechanisms like ICE or Corba.

- Window Manager configuration.

- Window Manager documentation.

« Geometry between desktops.

- Clients appearing on a proper subset of desktops.
+ Window-in-window MDI.

The Window Manager is supposed to be in charge of window memagt policy, so that there is
consistent behaviour on the user’s screen no matter whawhetclients.

The spec offers a lot of external control about Window Mamagéons. This is intended mainly to allow
pagers, taskbars and similar Window Manager Uls to be impiged as separate clients. "Ordinary"
clients shouldn’t use these except maybe in response teet diser request (i.e. setting a config option
to start maximized or specifying a -desk n cmdline argument)

Extended Window Manager Hints

3. Root Window Properties (+Related Messages)

Whenever this spec speaks about “sending a message to theimdow”, it is understood that the client
is supposed to create a ClientMessage event with the sgkcifigents and send it by using a SendEvent
request with the following arguments:

destination root

propagat e Fal se

event - nask (SubstructureNotify| SubstructureRedirect)
event the specified CientMessage

3.1. _NET_SUPPORTED

_NET_SUPPORTED, ATOM]/ 32

This property MUST be set by the Window Manager to indicatéciviints it supports. This assumes
that backwards incompatible changes will not be made toitits fwithout being renamed).

3.2. NET_CLIENT LIST

_NET_CLI ENT_LI ST, W NDOW]/ 32
_NET_CLI ENT_LI ST_STACKI NG, W NDOW]/ 32

These arrays contain all X Windows managed by the Window ldana NET_CLIENT_LIST has
initial mapping order, starting with the oldest window. NECLIENT_LIST_STACKING has
bottom-to-top stacking order. These properties SHOULDeberd updated by the Window Manager.

3.3. _NET_NUMBER_OF DESKTOPS

_NET_NUMBER_OF DESKTOPS, CARDI NAL/ 32

This property SHOULD be set and updated by the Window Manemgiedicate the number of virtual
desktops.

A Pager can request change in the desktops number by sendiig . NUMBER_OF DESKTOPS
message to the root window:

_NET_NUMBER_OF_DESKTOPS
message_type = _NET_NUMBER _OF_ DESKTOPS
format = 32
data.l[0] = new_nunber_of _desktops

The Window Manager is free to honor or reject this requesedtiest is honored
_NET_NUMBER_OF_DESKTOPS MUST be set to the new number dftdes,
_NET_VIRTUAL_ROOTS MUST be set to store the new number oktgsvirtual root window 1Ds

Extended Window Manager Hints

and _NET_DESKTOP_VIEWPORT and _NET_WORKAREA must also engied accordingly. The
_NET_DESKTOP_NAMES property MAY remain unchanged.

If the number of desktops is shrinking and NET_CURRENT_REGSP is out of the new range of of
available desktops, then this MUST must be set to the lagbaadesktop from the new set. If number
of desktops is shrinking then clients that are still presendesktops, that are out of the new range,
MUST be moved to the very last desktop from the new set. Feeth& ET_WM_DESKTOP MUST be
updated.

3.4. _NET_DESKTOP_GEOMETRY

_NET_DESKTOP_GEOVETRY wi dt h, hei ght, CARDI NAL[2]/ 32

Array of two cardinals that defines the common size of all tigsk This property SHOULD be set by
the Window Manager.

A Pager can request a change in the desktop geometry by gemdMET_DESKTOP_GEOMETRY
client message to the root window:

_NET_DESKTOP_GEQVETRY
message_type = _NET_DESKTOP_GEQVETRY
format = 32
data.l[0] = new w dth
data.l[1] new_hei ght

The Window Manager MAY choose to ignore this message, in wbase
_NET_DESKTOP_GEOMETRY property will remain unchanged.

3.5. _NET_DESKTOP_VIEWPORT

_NET_DESKTOP_VI EWPORT X, y, CARDINAL[][2]/32

Array of pairs of cardinals that define the top left corneradle desktops viewport. For window
managers that don’t support large desktops, this MUST awayset to (0,0).

A Pager can request to change the viewport for the currektajeby sending a
_NET_DESKTOP_VIEWPORT client message to the root window:

_NET_DESKTOP_VI EWPORT
message_type = _NET_DESKTOP_VI EWPORT
format = 32
data.l[0] = new_vx
data.l[1] new_vy

The Window Manager MAY choose to ignore this message, in wbase
_NET_DESKTOP_VIEWPORT property will remain unchanged.

Extended Window Manager Hints
3.6. _NET_CURRENT_DESKTOP

_NET_CURRENT_DESKTOP deskt op, CARDI NAL/ 32

The index of the current desktop. This is always an integevéen 0 and
_NET_NUMBER_OF_DESKTOPS - 1. This MUST be set and updatetth®yVindow Manager If a
Pager wants to switch to another virtual desktop, it MUSTdsenNET_CURRENT_DESKTOP client
message to the root window:

_NET_CURRENT_DESKTOP
nmessage_type = _NET_CURRENT_DESKTOP
format = 32
data.l[0] = new_i ndex

3.7. NET_DESKTOP_NAMES
_NET_DESKTOP_NAMES, UTF-8_STRINJ]

The names of all virtual desktops. This is a list of NULL-témated strings in UTF-8 [1] encoding. This
property MAY be changed by a Pager or the Window Manager atiarey.

Note: The number of names could be different from NET_NUNRBBF _DESKTOPS. Ifitis less
than _NET_NUMBER_OF_DESKTOPS - then the desktops with higimbers are unnamed. If it is
larger than _NET_NUMBER_OF_DESKTOPS, then the excess sauiside of the
_NET_NUMBER_OF_DESKTOPS are considered to be reservedsa number of desktops is
increased.

Rationale: The name is not a necessary attribute of a videsktop. Thus the availability or
unavailability of names has no impact on virtual desktogcfiomality. Since names are set by users and
users are likely to preset names for a fixed number of deskitogh@esn’t make sense to shrink or grow
this list when the number of available desktops changes.

3.8. _NET_ACTIVE_WINDOW

_NET_ACTI VE_W NDOW W NDOW 32

The window ID of the currently active window or None if no wimwd has the focus. This is a read-only
property set by the window manager. If a client (for examaligskbar) wants to activate another
window, it MUST send a _NET_ACTIVE_WINDOW client messagehe root window:

_NET_ACTI VE_W NDOW

wi ndow = wi ndow to activate
nmessage_type = _NET_ACTI VE_W NDOW
format = 32

data.l[0] = O /* may be used |later */

Extended Window Manager Hints

3.9. NET_WORKAREA
_NET_WORKAREA, X, y, width, height CARDINAL[][4]/32

This property MUST be set by WM upon calculating the work dogaach desktop. Contains a
geometry for each desktop. These geometries are specifididedo the viewport on each desktop and
specify an area that is completely contained within the piest: Work area SHOULD be used by
desktop applications to place desktop icons appropriately

The window manager SHOULD calculate this space by takingtineent page minus space occupied by
dock and panel windows, as indicated by tiNET _WM_STRUTproperty set on client windows.

3.10. NET_SUPPORTING_WM_CHECK

_NET_SUPPORTI NG WM CHECK, W NDOW 32

The Window Manager MUST set this property on the root windowe the 1D of a child window
created by the WM, to indicate that a compliant WM is activiee Thild window MUST also have the
_NET_SUPPORTING_WM_CHECK property set to the ID of the @hiindow. The child window
MUST also have the _NET_WM_NAME property set to the name efWindow Manager.

Rationale: The child window is used to distinguish an actwedow manager from a stale
_NET_SUPPORTING_WM_CHECK property that happens to pairartother window. If the
_NET_SUPPORTING_WM_CHECK window on the client window isssing or not properly set,
clients SHOULD assume that no conforming window managerasent.

3.11. NET_VIRTUAL ROOTS

_NET_VI RTUAL_ROOTS, W NDOW]/ 32

To implement virtual desktops, some window managers repatient windows to a child of the root
window. Window managers using this technique MUST set thogerty to a list of IDs for windows that
are acting as virtual root windows. This property allowsKkzaound setting programs to work with
virtual roots and allows clients to figure out the WM frame doms of their windows.

4. Other Root Window Messages

4.1. NET_CLOSE_WINDOW

_NET_CLOSE_W NDOW

Pagers wanting to close a window MUST send a NET_CLOSE_V@OMIxlient message request to
the root window:

_NET_CLOSE_W NDOW

Extended Window Manager Hints

wi ndow = wi ndow to cl ose
message_type = _NET_CLOSE_W NDOW
format = 32

data.l[0] = 0 /* may be used later */

The Window Manager MUST then attempt to close the window iipelc

Rationale: A window manager might be more clever than thalusethod (send WM_DELETE
message if the protocol is selected, XKillClient othenyisemight introduce a timeout, for example.
Instead of duplicating the code, the Window Manager caryedsithe job.

4.2. NET_WM_MOVERESIZE

_NET_WM MOVERESI ZE
wi ndow = wi ndow to be noved or resized
message_type = _NET_\WW MOVERESI ZE
format = 32
data.l[0] = x_root
data.l[1] y_root
data.l[2] direction

This message allows an application to initiate window mosehor resizing. This allows the application
to define its own move and size "grips", whilst letting the eloav manager control the actual
move/resize. This means that all moves / resizes can hapgecdnsistent manner as defined by the
WM.

When sending this message, x_rootand y_root MUST indit&t@osition of the mouse click with
respect to the root window and direction MUST indicate whkethis is a move or resize event, and if it
is a resize event, which edges of the window the size gripieppa.

#define _NET_\WM MOVERES| ZE_S| ZE_TOPLEFT
#define _NET WM MOVERES| ZE_S| ZE_TOP

#define _NET WM MOVERES| ZE_SI ZE_TOPRI GHT
#define _NET_WM MOVERESI ZE_S| ZE_RI GHT
#define _NET \WM MOVERES| ZE_S| ZE_BOTTOVRI GHT
#define _NET_\WM MOVERES| ZE_SI ZE_BOTTOM
#define _NET WM MOVERES| ZE_S| ZE_BOTTOMLEFT
#define _NET \WM MOVERES| ZE_SI ZE_LEFT
#define _NET WM MOVERES| ZE_MOVE

O ~NOoO Ok~ WNPEFEO

/* Moverment only */

The client MUST release all grabs on Pointer events, prisetading such message.

5. Application Window Properties

5.1. NET_WM_NAME

_NET_WM NAME, UTF-8_STRI NG

10

Extended Window Manager Hints

The Client SHOULD set this to the title of the window in UTF-8aeding. If set, the Window Manager
should use this in preference to WM_NAME.

5.2. _NET_WM_VISIBLE_NAME
_NET_WM VI SI BLE_NAME, UTF-8_STRI NG
If the Window Manager displays a window name other than _NEWM_NAME the Window Manager

MUST set this to the title displayed in UTF-8 encoding.

Rationale: For window managers that display a title difféfeom the _NET_WM_NAME or
WM_NAME of the window (i.e. xterm <1>, xterm <2>, ... is shoybut NET_WM_NAME /
WM_NAME is still xterm for each window). This property all@taskbars / pagers to display the same

title as the window manager.

5.3. NET_WM_ICON_NAME
_NET_WM | CON_NAME, UTF-8_STRI NG

The Client SHOULD set this to the title of the icon for this wiow in UTF-8 encoding. If set, the
Window Manager should use this in preference to WM_ICON_NAM

54. NET_ WM VISIBLE ICON_NAME
_NET_Ww VI SI BLE_| CON_NAVE, UTF-8_STRI NG

If the Window Manager displays an icon name other than _NEW WCON_NAME the Window
Manager MUST set this to the title displayed in UTF-8 encgdin

5.5. NET_WM_ DESKTOP
_NET_WwM DESKTOP <deskt op>, CARDI NAL/ 32

Cardinal to determine the desktop the window is in (or wamtsd) starting with O for the first desktop.
A Client MAY choose not to set this property, in which case Wiedow Manager SHOULD place as it
wishes. OXxFFFFFFFF indicates that the window SHOULD appeat| desktops/workspaces.

The Window Manager should honor _NET_WM_DESKTOP wheneweittadrawn window requests to
be mapped.

A Client can request a change of desktop for a non-withdraimdew by sending a
_NET_WM_DESKTOP client message to the root window:

_NET_WWM _DESKTOP
wi ndow = the respective client w ndow
nmessage_type = _NET_WM DESKTOP
format = 32

11

Extended Window Manager Hints

data.l[0] = new_desktop

The Window Manager MUST keep this property updated on albaiws.

5.6. NET_WM_WINDOW_TYPE
_NET_WM W NDOW TYPE, ATOM]/ 32

This MUST be set by the Client before mapping, to a list of atamdicating the functional type of the
window. This property SHOULD be used by the window manageleitermining the decoration,
stacking position and other behaviour of the window. The@lISHOULD specify window types in
order of preference (the first being most preferable), buSWlihclude at least one of the basic window
type atoms from the list below. This is to allow for extensairthe list of types, whilst providing default
behaviour for window managers that do not recognise theneidas.

Rationale: This hint is intend to replace the MOTIF hintse@f the objections to the MOTIF hints is
that they are a purely visual description of the window dation. By describing the function of the
window, the window manager can apply consistent decoratiohbehaviour to windows of the same
type. Possible examples of behaviour include keeping gaciels on top or allowing pinnable menus /
toolbars to only be hidden when another window has focus {®tep style).

NET\WM W NDOW TYPE_DESKTOP, ATOM
_NET_Wv W NDOW TYPE_DOCK, ATOM
NET\WWM W NDOW TYPE_TOOLBAR, ATOM
NET\WWM W NDOW TYPE_MENU, ATOM
NET\WWM W NDOW TYPE_DI ALOG, ATOM
NET\WM W NDOW TYPE_NORMAL, ATOM

_NET_WM_WINDOW_TYPE_DESKTOP indicates a desktop featilitgs can include a single
window containing desktop icons with the same dimensiorte@screen, allowing the desktop
environment to have full control of the desktop, without tieed for proxying root window clicks.

_NET_WM_WINDOW_TYPE_DOCK indicates a dock or panel featufypically a window manager
would keep such windows on top of all other windows.

_NET_WM_WINDOW_TYPE_TOOLBAR and _NET_WM_WINDOW_TYPE_BNU indicate
toolbar and pinnable menu windows, respectively.

_NET_WM_WINDOW_TYPE_DIALOG indicates that this is a diglavindow. If
_NET_WM_WINDOW_TYPE is not set, then windows with WM_TRANENT_FOR set MUST be
taken as this type.

_NET_WM_WINDOW_TYPE_NORMAL indicates that this is a norinap-level window. Windows
with neither NET_WM_WINDOW_TYPE nor WM_TRANSIENT _FOReset MUST be taken as this

type.

5.7. NET_WM_STATE

NET\WWM STATE, ATOM]

12

Extended Window Manager Hints

A list of hints describing the window state. Atoms preserthia list MUST be considered set, atoms not
present in the list MUST be considered not set. The Windowadgan SHOULD honor
_NET_WM_STATE whenever a withdrawn window requests to bepea. A Client wishing to change
the state of a window MUST send a _NET_WM_STATE client meggaghe root window (see below).
The Window Manager MUST keep this property updated to reflecturrent state of the window.

Possible atoms are:

NET\WM STATE_MODAL, ATOM

NET\WM STATE_STI CKY, ATOM
NET\WWM _STATE_MAXI M ZED_VERT, ATOM
NET\WM STATE_MAXI M ZED_HORZ, ATOM
NET\WM _STATE_SHADED, ATOM
NET\WM STATE_SKI P_TASKBAR, ATOM
NET\WM STATE_SKI P_PAGER, ATOM

An implementation MAY add new atoms to this list. Implemdittas without extensions MUST ignore
any unknown atoms, effectively removing them from the Ili$tese extension atoms MUST NOT start
with the prefix _NET.

_NET_WM_STATE_MODAL indicates that this is a modal dialoggh The WM_TRANSIENT_FOR
hint MUST be set to indicate which window the dialog is a mddalor set to the root window if the
dialog is a modal for its window group.

_NET_WM_STATE_STICKY indicates that the Window Manager@BLD keep the window’s
position fixed on the screen, even when the virtual desktaoglsc

_NET_WM_STATE_MAXIMIZED_{VERT,HORZ} indicates that thevindow is
{vertically,horizontally} maximised.

_NET_WM_STATE_SHADED indicates that the window is shaded.
_NET_WM_SKIP_TASKBAR indicates that the window should betincluded on a taskbar.
_NET_WM_SKIP_PAGER indicates that the window should noirfaéuded on a pager.

To change the state of a mapped window, a Client MUST send & _MB_STATE client message to
the root window (window is the respective window, type _NBVMM_STATE, format 32, [[0]=xthe
action, as listed below, [[1]=<First property to alter, [[2]=<Second property to altes). This
message allows two properties to be changed simultanespsglgifically to allow both horizontal and
vertical maximisation to be altered together. [[2] MUST le¢t® zero if only one property is to be
changed. I[0], the action, MUST be one of:

_NET_WM STATE_REMOVE 0 /* renove/ unset property */
_NET_WM STATE_ADD 1 /* add/set property */
_NET_WM STATE_TOGGLE 2 /* toggle property */

See also the implementation notesusgencyandfixed size windows

5.8. NET_WM_STRUT

_NET_WM STRUT, left, right, top, bottom CARDI NAL[4]/32

13

Extended Window Manager Hints

This property MUST be set by the Client if the window is to megespace at the edge of the screen. The
property contains a 4 cardinals specifying the width of #served area at each border of the screen. The
order of the borders is left, right, top, bottom. The clierA¥ichange this property anytime, therefore

the Window Manager MUST watch out for property notify events

The purpose of struts is to reserve space at the borders désieop. This is very useful for a docking
area, a taskbar or a panel, for instance. The window manhgatdsknow about this reserved space in
order to be able to preserve the space. Also maximized wiadtwuld not cover that reserved space.

Rationale: A simple "do not cover" hint is not enough for degwith e.g. auto-hide panels.

Notes: An auto-hide panel SHOULD set the strut to be its mimmhidden size. A "corner" panel that
does not extend for the full length of a screen border SHOULL set one strut.

5.9. NET_ WM _ICON_GEOMETRY
_NET_WM_ | CON_GEOVETRY, X, y, width, height, CARDI NAL[4]/32

This optional property MAY be set by standalone tools likaskbar or an iconbox. It specifies the
geometry of a possible icon in case the window is iconified.

Rationale: This makes it possible for a window manager tpldisa nice animation like morphing the
window into its icon.

5.10. NET_WM_ICON
NET\WM_| CON CARDI NAL[][2+n] / 32

This is an array of possible icons for the client. This speatfon does not stipulate what size these icons
should be, but individual desktop environments or toolkitsy do so. The Window Manager MAY scale
any of these icons to an appropriate size.

This is an array of 32bit packed CARDINAL ARGB with high byteibhg A, low byte being B. First two
bytes are width, height. Data is in rows, left to right and tojpottom.

5.11. NET_WM_PID

_NET_WM Pl D CARDI NAL/ 32

If set, this property MUST contain the process ID of the dli@wning this window. This MAY be used
by the Window Manager to kill windows which do not respondie t NET_WM_PING protocol.

See also the implementation noteskilling hung processes

5.12. NET_WM_HANDLED_ICONS

_NET_WM HANDLED_| CONS

14

Extended Window Manager Hints

This property can be set by clients to indicate that the WinN@anager need not provide icons for
iconified windows, for example if the client is a taskbar anoMides buttons for iconified windows.

6. Window Manager Protocols

6.1. NET_WM_PING

This protocol allows the Window Manager to determine if tHiet is still processing X events. This

can be used by the Window Manager to determine if a window fvfaids to close after being sent
WM_DELETE_WINDOW has stopped responding, or has stalleddéme other reason, such as waiting
for user confirmation. A Client SHOULD indicate that it is ilg to participate in this protocol by

listing _NET_WM_PING in the WM_PROTOCOLS property of théecit window.

A Window Manager can use this protocol at any time by sendidligeat message as follows:

type = dient Message

wi ndow = the respective client w ndow
nmessage_t ype = WM PROTOCOLS

format = 32

data. | [0]
data.l[1]

_NET_WM _PI NG
ti mestanp

A patrticipating Client receiving this message MUST senditlbto the root window immediately, by
setting window = root, and calling XSendEvent. The Client STUNOT alter the timestamp, as this can
be used by the Window Manager to uniquely identify the ping.

The Window Manager MAY kill the Client (using _NET_WM_PIDit fails to respond to this protocol
within a reasonable time.

See also the implementation noteskilting hung processes

7. Implementation notes

7.1. Desktop/workspace model

This spec assumes a desktop model that consists of one orcorapetely independent desktops which
may or may not be larger than the screen area. When a deshk#omges than the screen it is left to the
window manager if it will implement scrolling or paging.

7.2. File Manager desktop

This spec suggests implementing the file manager desktoabpypimg a desktop-sized window (no
shape) to all desktops, with _NET_WM_WINDOW_TYPE_DESKT®Rs makes the desktop

15

Extended Window Manager Hints

focusable and greatly simplifies implementation of the fikniager. It is also faster than managing lots
of small shaped windows. The file manager draws the backgronrthis window. There should be a
root property with a window handle for use in applicatiorasttvant to draw the background (xearth).

7.3. Implementing enhanced support for application transi ent
windows

If the WM_TRANSIENT_FOR property is set to None or Root wimgdhe window should be treated as
a transient for all other windows in the same group. It hasilmeged that this is a slight ICCCM
violation, but as this behaviour is pretty standard for mamolkits and window managers, and is
extremely unlikely to break anything, it seems reasonabtibtument it as standard.

7.4. Urgency

Dialog boxes should indicate their urgency level (inforimaor warning) using the urgency bit in the
WM_HINTS.flags property, as defined in the ICCCM.

7.5. Fixed size windows

Windows can indicate that they are non-resizable by settimpeight = maxheight and minwidth =
maxwidth in the ICCCM WM_NORMAL_HINTS property. The Windowtanager MAY decorate such
windows differently.

7.6. Pagers and Taskbars

This specification attempts to make reasonable provisiomd/M independent pagers and taskbars.
Window Managers that require / desire additional functitywheyond what can be achieved using the
mechanisms set out in this specification may choose to impi¢their own pagers, which
communicates with the Window Manager using further, WMesipehints, or some other means.

7.7. Window Movement

Window manager implementors should refer to the ICCCM fdinitéve specifications of how to handle
MapRequest and ConfigureRequest events. However, singe éispects of the ICCCM are easily
misread, this document offers the following clarifications

« Window managers MUST honour the win_gravity field of WM_NORM HINTS for both
MapRequest _and_ ConfigureRequest events [1]

- Applications are free to change their win_gravity settibgray time

If application changes its gravity then Window manager sthadjust the reference point, so that
client window will not move as the result. For example if alis gravity was NorthWestGravity and

16

Extended Window Manager Hints

reference point was at the top-left corner of the frame windben after change of gravity to the
SouthEast reference point should be adjusted to point ttoter-right corner of the frame.

When generating synthetic ConfigureNotify events, thetfmosgiven MUST be the top-left corner of
the client window in relation to the origin of the root winddiae., ignoring win_gravity) [2]

XMoveWindow(w,X,y) behaviour depends on the window gravitpon receiving a request from
client application the Window Manager calculates a newregfee point, based on the client window's
own size, border width and gravity. For given client windowdntions (width, height) and border
width (bw), the reference point will be placed at:

Gravity: ref_x: ref_y:
StaticGravity X y
NorthWestGravity X-bw y-bw
NorthGravity x+(width/2) y-bw
NorthEastGravity x+width+bw y-bw
EastGravity x+width+bw y+(height/2)
SouthEastGravity x+width+bw y+height+bw
SouthGravity X+(width/2) y+height+bw
SouthWestGravity X-bw y+height+bw
WestGravity X-bw y+(height/2)
CenterGravity X+(width/2) y+(height/2)

The Window manager will use the reference point as calcdilai®ve, until next XMoveWindow
request. The Window Manager will place frame decoratiorikénfollowing position, based on the
window gravity :

StaticGravity:

window’s left top corner will be placed at (ref_x,ref_y)
NorthWestGravity:

window frame’s left top corner will be placed at (ref_x,rgf
NorthGravity:

window frame’s top side’s center will be placed at (ref k.58
NorthEastGravity:

window frame’s right top corner will be placed at (ref_x,rgf
EastGravity:

window frame’s right side’s center will be placed at (refex, y)
SouthWestGravity:

window frame’s left bottom corner will be placed at (ref ef,ry)
SouthGravity:

window frame’s bottom side’s center will be placed at (refek y)

17

Extended Window Manager Hints

SouthEastGravity:

window frame’s right bottom corner will be placed at (refref, y)
WestGravity:

window frame’s left side’s center will be placed at (ref ef,ry)
CenterGravity:

window frame’s center will be placed at (ref_x,ref_y)

- Implementation Note for Application developers:

When client window is resized - its reference point does nomtenSo for example if window has
SouthEastGravity and it is resized - the bottom-right cooféts frame will not move but instead
top-left corner will be adjusted by the difference in size.

- Implementation Note for WM developers :

when calculating reference point at the time of initial @iaxent - initial window’s width should be
taken into consideration, as if it was the frame for this veiwwd

[1] ICCCM Version 2.0, 84.1.2.3and §84.1.5
[2] ICCCM Version 2.0, §4.2.3

7.8. Window-in-Window MDI

The authors of this specification acknowledge that there istandard method to allow the Window
Manager to manage windows that are part of a Window-in-WiniitD| application. Application

authors are advised to use some other form of MDI, or to p@parechanism to be included in the next
revision of this specification.

7.9. Killing Hung Processes

If processes fail to respond to the _NET_WM_PING protocoETNWM_PID may be used in
combination with the ICCCM specified WM_CLIENT_MACHINE(&ING) to attempt to kill a
process.

8. References

[1] F. Yergeau,"UTF-8, a transformation format of ISO 10648~C 2279

[2] David Rosenthal / Stuart W. Marks "Inter-Client Commeation Conventions Manual (Version 2.0)",
X Consortium Standard, X Version 11, Release 6.3

18

Extended Window Manager Hints

9. Copyright

Copyright (C) 2000 See Contributors List

Permission is hereby granted, free of charge, to any pets@ining a copy of this software and
associated documentation files (the "Software"), to detilérSoftware without restriction, including
without limitation the rights to use, copy, modify, mergepfish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom ther@odtis furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice dteihcluded in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NEVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUOF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS INHE
SOFTWARE.

10. Contributors

Sasha Vasko
Bradley T. Hughes
Dominik Vogt
Havoc Pennington
Jeff Raven

Jim Gettys

John Harper
Julian Adams
Matthias Ettrich
Micheal Rogers
Nathan Clemons
Tim Janik

Tomi Ollila

Sam Lantinga
The Rasterman
Paul Warren
Owen Taylor

Marko Macek

19

Extended Window Manager Hints

Greg Badros
Matthias Clasen

David Rosenthal

11. Change history

11.1. Changes since 1.0pre5

« Change history moved to end.

« UTF-8 Reference updated.

« Window Gravity information updated.
- Copyright Added.

- Minor typo corrections.

11.2. Changes since 1.0pre4

- Clarified the interpretation of client-provided geometrim large desktops.

« Added more explanation for _NET_DESKTOP_NAMES.

. Added NET_WM_ICON_NAME and NET_WM_VISIBLE_ICON_NAME.
« Tried to improve the wording of _NET_WM_STRUT explanation.

- Changed _NET_WORKAREA to an array of viewport-relative gedries.

- Updated list of “dependent” properties for _ NET_NUMBER_@ESKTOPS to include
_NET_WORKAREA and _NET_DESKTOP_VIEWPORT.

. Tidied formatting of all client messages.

11.3. Changes since 1.0pre3

+ Added information about common non-ICCCM features.

- Added explanation of sending messages to the root window.

« Removed XA _ prefix from type names.

- Clarified that “mapping order” refers to inital mapping ampesify the directions of both orders.
- Clarified that desktops have a common size specified by _NEBKITOP_GEOMETRY.

- Rewrote explanation of _NET_DESKTOP_VIEWPORT.

20

Extended Window Manager Hints

. Tidied formatting of _NET_CURRENT_DESKTOP.

+ Replaced “window handle” by “window ID".

- Tidied formatting of NET_WORKAREA.

- Rewrote the motivation for NET_VIRTUAL_ ROOTS.

- Added advice on Pointer grabs to _NET_WM_MOVERESIZE.
« Fixed typosin _NET_WM_STATE.

« Added _NET_WM_STATE_SKIP_PAGER.

- Tidied formatting of _NET_WM_STRUT.

« Tidied formatting of _NET_WM_ICON_GEOMETRY.

11.4. Changes since 1.0pre2

_NET_SET_NUMBER_OF_DESKTOPS-> NET_NUMBER_OF_DESKJBr consistency.
. _NET_WM_VISIBLE_NAME_STRING -> NET_WM_VISIBLE_NAME foconsistency.

. _NET_WM_STATE: added explanation of permitted extensiéwsled explanation of being set / not
set.

- Spellchecked, corrected various typos.

- UTF8 -> UTF-8 for consistency.

- added references to the ICCCM an UTF-8 (incomplete).
- added data and event formats where missing.

. clarified NET_SUPPORTING_WM_CHECK.

- fixed formatting of _NET_CLOSE_WINDOW message.

11.5. Changes since 1.0prel

- Removed implementation note concerning Gnome'’s (pot@fitamanager behaviour.

- The Window Movement section of the implementation notestieesn revised.

11.6. Changes since 1.9f

« Revised revision number for first accepted release 1.9XX0preXX.

- Prerequisites for adoption of this specification added.

« Tidied formatting of _NET_CURRENT_DESKTOP for consistgnc

- Tidied formatting of _NET_ACTIVE_WINDOW for consistendgemoved doubled text.

21

Extended Window Manager Hints

Tidied formatting of _NET_WM_DESKTOP for consistency.

Killing Hung Processes implementation note added. NET_WND and NET_WM_PING now
link to this.

Clarified x_rootand y_root meaning for _NET_WM_MOVERESIZE
Added contributor list.

11.7. Changes since 1.9¢e

Added NET_WM_VISIBLE_NAME_STRING

Removed ambiguity from _NET_NUMBER_OF_DESKTOPS and _NBESKTOP_NAMES in
combination.

Set NET_WM_MOVERESIZE format to 32 for consistency.
Removed _NET_PROPERTIES.
Removed comment from _NET_WM_MOVERESIZE.

11.8. Changes since 1.9d

Added NET_VIRTUAL_ROOTS

Added note about ICCCM compliant window moves.
Added NET_WM_HANDLED_ICONS

Added NET _SUPPORTING_WM_CHECK

Removed degrees of activation

11.9. Changes since 1.9c

Removed packaging of hints into 2 X properties. Jim Gettyintsmut that the performance gains of
fewer round trips can be better achieved using Xlib routines

Clarified that _NET_DESKTOP_VIEWPORT is in pixels

_NET_DESKTOP_VIEWPORT is now an array, one for each desktoallow for different active
viewports on different desktops

_NET_WM_STRUT now only applies on desktops on which thentlis visible

Introduced RFC 2119 language, and attempted to clarifydhes of the Window Manager, Pagers and
Applications

Added NET_WM_NAME
_NET_DESKTOP_NAMES now in UTF8

22

Extended Window Manager Hints

- Desktops now start from O

. Added NET_WM_PID

Added _NET_WM_PING protocol

Added NET _WM_STATE_SKIP_TASKBAR

11.10. Changes since 1.9b

- Removed NET_NUMBER_OF_DESKTOPS client message, as itapgunnecessarily with
NET{INSERT/DELETE} DESKTOP.

- Replaced NET_WM_LAYER and NET_WM_HINTS with _NET_WM_WDOW_TYPE
functional hint.

. Changed _NET_WM_STATE to a list of atoms, for extensibility

- Expanded description of _NET_WORKAREA and _NET_WM_STRUT.
« Removed _NET_WM_SIZEMOVE_NOTIFY protocol.

- Added degrees of activation to _NET_ACTIVE_WINDOW clienéssage
. Added NET_WM_ICON

« My comments are in [[]]. Comments from Marko’s draft are iM|1:]]

23

